Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (143) Expression Attributions Wiki
XB-ANAT-3732

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Early development of the olfactory organ in sturgeons of the genus Acipenser: a comparative and electron microscopic study., Zeiske E., Anat Embryol (Berl). April 1, 2003; 206 (5): 357-72.


cAMP-independent olfactory transduction of amino acids in Xenopus laevis tadpoles., Manzini I., J Physiol. August 15, 2003; 551 (Pt 1): 115-23.


Organization of glomeruli in the main olfactory bulb of Xenopus laevis tadpoles., Nezlin LP., J Comp Neurol. September 22, 2003; 464 (3): 257-68.


Classes and narrowing selectivity of olfactory receptor neurons of Xenopus laevis tadpoles., Manzini I., J Gen Physiol. February 1, 2004; 123 (2): 99-107.              


Expression of vomeronasal receptor genes in Xenopus laevis., Hagino-Yamagishi K., J Comp Neurol. April 26, 2004; 472 (2): 246-56.                      


Cascades of response vectors of olfactory receptor neurons in Xenopus laevis tadpoles., Schild D., Eur J Neurosci. October 1, 2004; 20 (8): 2111-23.


Effects of permeating ions and cGMP on gating and conductance of rod-type cyclic nucleotide-gated (CNGA1) channels., Kusch J., J Physiol. November 1, 2004; 560 (Pt 3): 605-16.


Individual olfactory sensory neurons project into more than one glomerulus in Xenopus laevis tadpole olfactory bulb., Nezlin LP., J Comp Neurol. January 17, 2005; 481 (3): 233-9.


The doublesex-related gene, XDmrt4, is required for neurogenesis in the olfactory system., Huang X., Proc Natl Acad Sci U S A. August 9, 2005; 102 (32): 11349-54.                        


Specific expression of olfactory binding protein in the aerial olfactory cavity of adult and developing Xenopus., Millery J., Eur J Neurosci. September 1, 2005; 22 (6): 1389-99.              


3D atlas describing the ontogenic evolution of the primary olfactory projections in the olfactory bulb of Xenopus laevis., Gaudin A., J Comp Neurol. September 5, 2005; 489 (4): 403-24.


ATP activates both receptor and sustentacular supporting cells in the olfactory epithelium of Xenopus laevis tadpoles., Czesnik D., Eur J Neurosci. January 1, 2006; 23 (1): 119-28.          


Xenopus embryos lacking specific isoforms of the corepressor SMRT develop abnormal heads., Malartre M., Dev Biol. April 15, 2006; 292 (2): 333-43.                    


Stable knock-down of vomeronasal receptor genes in transgenic Xenopus tadpoles., Kashiwagi A., Biochem Biophys Res Commun. June 23, 2006; 345 (1): 140-7.          


Spatial and temporal expression of the Grainyhead-like transcription factor family during murine development., Auden A., Gene Expr Patterns. October 1, 2006; 6 (8): 964-70.          


Cannabinoid action in the olfactory epithelium., Czesnik D., Proc Natl Acad Sci U S A. February 20, 2007; 104 (8): 2967-72.        


Response profiles to amino acid odorants of olfactory glomeruli in larval Xenopus laevis., Manzini I., J Physiol. June 1, 2007; 581 (Pt 2): 567-79.


Comprehensive interaction of dicalcin with annexins in frog olfactory and respiratory cilia., Uebi T., FEBS J. September 1, 2007; 274 (18): 4863-76.


Cloning and characterization of Xenopus dicalcin, a novel S100-like calcium-binding protein in Xenopus eggs., Miwa N., DNA Seq. October 1, 2007; 18 (5): 400-4.


Phylogenic aspects of the amphibian dual olfactory system., Taniguchi K., J Vet Med Sci. January 1, 2008; 70 (1): 1-9.


Improved fluorescent (calcium indicator) dye uptake in brain slices by blocking multidrug resistance transporters., Manzini I., J Neurosci Methods. January 30, 2008; 167 (2): 140-7.


Xenopus V1R vomeronasal receptor family is expressed in the main olfactory system., Date-Ito A., Chem Senses. April 1, 2008; 33 (4): 339-46.


Insect olfactory receptors are heteromeric ligand-gated ion channels., Sato K., Nature. April 24, 2008; 452 (7190): 1002-6.


Expression study of cadherin7 and cadherin20 in the embryonic and adult rat central nervous system., Takahashi M., BMC Dev Biol. June 23, 2008; 8 87.                


Nucleotide-induced Ca2+ signaling in sustentacular supporting cells of the olfactory epithelium., Hassenklöver T., Glia. November 15, 2008; 56 (15): 1614-24.


Early ontogeny of the olfactory organ in a basal actinopterygian fish: polypterus., Zeiske E., Brain Behav Evol. January 1, 2009; 73 (4): 259-72.


Distribution pattern of neuropeptide Y in the brain, pituitary and olfactory system during the larval development of the toad Rhinella arenarum (Amphibia: Anura)., Heer T., Anat Histol Embryol. April 1, 2009; 38 (2): 89-95.


Formation and patterning of the forebrain and olfactory system by zinc-finger genes Fezf1 and Fezf2., Shimizu T., Dev Growth Differ. April 1, 2009; 51 (3): 221-31.


Developmental expression of retinoic acid receptors (RARs)., Dollé P., Nucl Recept Signal. May 12, 2009; 7 e006.            


Highly specific responses to amine odorants of individual olfactory receptor neurons in situ., Gliem S., Eur J Neurosci. June 1, 2009; 29 (12): 2315-26.            


Insect olfactory receptor complex functions as a ligand-gated ionotropic channel., Touhara K., Ann N Y Acad Sci. July 1, 2009; 1170 177-80.


Purinergic signaling regulates cell proliferation of olfactory epithelium progenitors., Hassenklöver T., Stem Cells. August 1, 2009; 27 (8): 2022-31.


Heterogeneous distribution of G protein alpha subunits in the main olfactory and vomeronasal systems of Rhinella (Bufo) arenarum tadpoles., Jungblut LD., Zoolog Sci. October 1, 2009; 26 (10): 722-8.


Cloning and characterization of voltage-gated calcium channel alpha1 subunits in Xenopus laevis during development., Lewis BB., Dev Dyn. November 1, 2009; 238 (11): 2891-902.                                


G protein-coupled receptor mediated trimethylamine sensing., Suska A., Biosens Bioelectron. December 15, 2009; 25 (4): 715-20.


Endocannabinoid modulation in the olfactory epithelium., Breunig E., Results Probl Cell Differ. January 1, 2010; 52 139-45.


An odorant receptor from the southern house mosquito Culex pipiens quinquefasciatus sensitive to oviposition attractants., Pelletier J., PLoS One. April 8, 2010; 5 (4): e10090.          


The endocannabinoid 2-arachidonoyl-glycerol controls odor sensitivity in larvae of Xenopus laevis., Breunig E., J Neurosci. June 30, 2010; 30 (26): 8965-73.


Odorant receptor from the southern house mosquito narrowly tuned to the oviposition attractant skatole., Hughes DT., J Chem Ecol. August 1, 2010; 36 (8): 797-800.  


Wnt/beta-catenin signaling is involved in the induction and maintenance of primitive hematopoiesis in the vertebrate embryo., Tran HT., Proc Natl Acad Sci U S A. September 14, 2010; 107 (37): 16160-5.                                                


Characterization of a novel type I keratin gene and generation of transgenic lines with fluorescent reporter genes driven by its promoter/enhancer in Xenopus laevis., Suzuki KT., Dev Dyn. December 1, 2010; 239 (12): 3172-81.                  


Purinergic receptor-mediated Ca signaling in the olfactory bulb and the neurogenic area of the lateral ventricles., Hassenklöver T., Purinergic Signal. December 1, 2010; 6 (4): 429-45.                


Cloning and characterization of GABAA α subunits and GABAB subunits in Xenopus laevis during development., Kaeser GE., Dev Dyn. April 1, 2011; 240 (4): 862-73.                                          


Developmental changes in lectin-binding patterns of three nasal sensory epithelia in Xenopus laevis., Endo D., Anat Rec (Hoboken). May 1, 2011; 294 (5): 839-46.


The location of olfactory receptors within olfactory epithelium is independent of odorant volatility and solubility., Abaffy T., BMC Res Notes. May 6, 2011; 4 137.        


V-ATPase-dependent ectodermal voltage and pH regionalization are required for craniofacial morphogenesis., Vandenberg LN., Dev Dyn. August 1, 2011; 240 (8): 1889-904.                        


The styryl dye FM1-43 suppresses odorant responses in a subset of olfactory neurons by blocking cyclic nucleotide-gated (CNG) channels., Breunig E., J Biol Chem. August 12, 2011; 286 (32): 28041-8.        


Distinct axonal projections from two types of olfactory receptor neurons in the middle chamber epithelium of Xenopus laevis., Nakamuta S., Cell Tissue Res. October 1, 2011; 346 (1): 27-33.


Involvement of Gα(olf)-expressing neurons in the vomeronasal system of Bufo japonicus., Hagino-Yamagishi K., J Comp Neurol. November 1, 2011; 519 (16): 3189-201.


Origin and segregation of cranial placodes in Xenopus laevis., Pieper M., Dev Biol. December 15, 2011; 360 (2): 257-75.                        

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 ???pagination.result.next???