Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (1369) Expression Attributions Wiki
XB-ANAT-247

Papers associated with neural plate

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 18 19 20 21 22 23 24 25 26 27 28

Sort Newest To Oldest Sort Oldest To Newest

Neural plate morphogenesis and axial stretching in "notochord-defective" Xenopus laevis embryos., Malacinski GM., Dev Biol. December 1, 1981; 88 (2): 352-7.


The movement of the prospective eye vesicles from the neural plate into the neural fold in Ambystoma mexicanum and Xenopus laevis., Brun RB., Dev Biol. November 1, 1981; 88 (1): 192-9.


Rohon-Beard neuron origin from blastomeres of the 16-cell frog embryo., Jacobson M., J Neurosci. August 1, 1981; 1 (8): 918-22.


Clonal organization of the central nervous system of the frog. II. Clones stemming from individual blastomeres of the 32- and 64-cell stages., Jacobson M., J Neurosci. March 1, 1981; 1 (3): 271-84.


Substrate pathways demonstrated by transplanted Mauthner axons., Katz MJ., J Comp Neurol. February 1, 1981; 195 (4): 627-41.


An atlas of notochord and somite morphogenesis in several anuran and urodelean amphibians., Youn BW., J Embryol Exp Morphol. October 1, 1980; 59 223-47.                        


Electrical excitability of outgrowing neurites of embryonic neurones in cultures of dissociated neural plate of Xenopus laevis., Willard AL., J Physiol. April 1, 1980; 301 115-28.


Specification of retinotectal connexions during development of the toad Xenopus laevis., Sharma SC., J Embryol Exp Morphol. February 1, 1980; 55 77-92.


Rohon-beard cells and other large neurons in Xenopus embryos originate during gastrulation., Lamborghini JE., J Comp Neurol. January 15, 1980; 189 (2): 323-33.


The function of the sodium pump during differentiation of amphibian embryonic neurones., Messenger EA., J Physiol. July 1, 1979; 292 85-105.


Photoreceptor outer segment development: light and dark regulate the rate of membrane addition and loss., Hollyfield JG., Invest Ophthalmol Vis Sci. February 1, 1979; 18 (2): 117-32.


[Transfer of behavior patterns through transplantation of systems of neuroanatomic structures in amphibian larvae. II. Xenoplastic transplantation of hind brain systems between Xenopus laevis (Daud.) as well as Hymenochirus boettgeri (Torn.) and Triturus vulgaris]., Rössler E., Z Tierpsychol. January 1, 1978; 46 (1): 1-13.


[Transfer of behavior patterns through transplantation of anlagen of neuro-anatomic structures in amphibian larva. 1. Xenoplastic exchange of medulla anlagen between Xenopus laevis and Hymenochirus boettgeri (Amphibia, Anura)]., Rössler E., Z Tierpsychol. July 1, 1976; 41 (3): 244-65.


Pattern formation in early developmental stages of amphibian embryos., Tiedemann H., J Embryol Exp Morphol. June 1, 1976; 35 (3): 437-44.


The development of the action potential mechanism of amphibian neurons isolated in culture., Spitzer NC., Proc Natl Acad Sci U S A. May 1, 1976; 73 (5): 1641-5.


Developmental programming for retinotectal patterns., Hunt RK., Ciba Found Symp. January 1, 1975; 0 (29): 131-59.


Specification of positional information in retinal ganglion cells of Xenopus laevis: intra-ocular control of the time of specification., Hunt RK., Proc Natl Acad Sci U S A. September 1, 1974; 71 (9): 3616-20.


LOCALIZATION OF CAPACITIES FOR FUNCTIONAL DEVELOPMENT IN THE NEURAL PLATE OF XENOPUS LAEVIS., CORNER M., J Comp Neurol. October 1, 1964; 123 243-55.


DEVELOPMENT OF THE BRAIN IN XENOPUS LAEVIS AFTER REMOVAL OF PARTS OF THE NEURAL PLATE., CORNER MA., J Exp Zool. August 1, 1963; 153 301-11.

???pagination.result.page??? ???pagination.result.prev??? 18 19 20 21 22 23 24 25 26 27 28