Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (1369) Expression Attributions Wiki
XB-ANAT-247

Papers associated with neural plate

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 17 18 19 20 21 22 23 24 25 26 27 28 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

The appearance of acetylated alpha-tubulin during early development and cellular differentiation in Xenopus., Chu DT., Dev Biol. November 1, 1989; 136 (1): 104-17.                  


Early neurogenesis in Xenopus: the spatio-temporal pattern of proliferation and cell lineages in the embryonic spinal cord., Hartenstein V., Neuron. October 1, 1989; 3 (4): 399-411.


Ectopic expression of the proto-oncogene int-1 in Xenopus embryos leads to duplication of the embryonic axis., McMahon AP., Cell. September 22, 1989; 58 (6): 1075-84.                


Quantitative lineage analysis of the origin of frog primary motor and sensory neurons from cleavage stage blastomeres., Moody SA., J Neurosci. August 1, 1989; 9 (8): 2919-30.


Experimental reversal of the normal dorsal-ventral timing of blastopore formation does not reverse axis polarity in Xenopus laevis embryos., Black SD., Dev Biol. August 1, 1989; 134 (2): 376-81.


Progressive determination during formation of the anteroposterior axis in Xenopus laevis., Sive HL., Cell. July 14, 1989; 58 (1): 171-80.


Expression of an engrailed-related protein is induced in the anterior neural ectoderm of early Xenopus embryos., Brivanlou AH., Development. July 1, 1989; 106 (3): 611-7.                  


Lithium changes the ectodermal fate of individual frog blastomeres because it causes ectopic neural plate formation., Klein SL., Development. July 1, 1989; 106 (3): 599-610.


Differential gene expression in the anterior neural plate during gastrulation of Xenopus laevis., Jamrich M., Development. April 1, 1989; 105 (4): 779-86.            


Expression of intermediate filament proteins during development of Xenopus laevis. II. Identification and molecular characterization of desmin., Herrmann H., Development. February 1, 1989; 105 (2): 299-307.              


Expression of intermediate filament proteins during development of Xenopus laevis. I. cDNA clones encoding different forms of vimentin., Herrmann H., Development. February 1, 1989; 105 (2): 279-98.                      


Expression of intermediate filament proteins during development of Xenopus laevis. III. Identification of mRNAs encoding cytokeratins typical of complex epithelia., Fouquet B., Development. December 1, 1988; 104 (4): 533-48.                      


Gene expression in the embryonic nervous system of Xenopus laevis., Richter K., Proc Natl Acad Sci U S A. November 1, 1988; 85 (21): 8086-90.      


Lack of axon regeneration of isthmic neurons in juvenile Xenopus., McCart R., Neurosci Lett. October 5, 1988; 92 (2): 143-8.


Expression of Epi 1, an epidermis-specific marker in Xenopus laevis embryos, is specified prior to gastrulation., London C., Dev Biol. October 1, 1988; 129 (2): 380-9.              


Accumulation and decay of DG42 gene products follow a gradient pattern during Xenopus embryogenesis., Rosa F., Dev Biol. September 1, 1988; 129 (1): 114-23.            


Effects of altered expression of the neural cell adhesion molecule, N-CAM, on early neural development in Xenopus embryos., Kintner C., Neuron. September 1, 1988; 1 (7): 545-55.


The distribution of fibronectin and tenascin along migratory pathways of the neural crest in the trunk of amphibian embryos., Epperlein HH., Development. August 1, 1988; 103 (4): 743-56.                  


The first cleavage plane and the embryonic axis are determined by separate mechanisms in Xenopus laevis. II. Experimental dissociation by lateral compression of the egg., Black SD., Dev Biol. July 1, 1988; 128 (1): 65-71.


The first cleavage plane and the embryonic axis are determined by separate mechanisms in Xenopus laevis. I. Independence in undisturbed embryos., Danilchik MV., Dev Biol. July 1, 1988; 128 (1): 58-64.


Microinjection of synthetic Xhox-1A homeobox mRNA disrupts somite formation in developing Xenopus embryos., Harvey RP., Cell. June 3, 1988; 53 (5): 687-97.              


The ultrastructural organization of the isthmic nucleus in Xenopus., McCart R., Anat Embryol (Berl). January 1, 1988; 177 (4): 325-30.


Endogenous lectin secretion into the extracellular matrix of early embryos of Xenopus laevis., Outenreath RL., Dev Biol. January 1, 1988; 125 (1): 187-94.


The effects of tectal lesion on the survival of isthmic neurones in Xenopus., Straznicky C., Development. December 1, 1987; 101 (4): 869-76.


Expression sequences and distribution of two primary cell adhesion molecules during embryonic development of Xenopus laevis., Levi G., J Cell Biol. November 1, 1987; 105 (5): 2359-72.                  


Inductive interactions in the spatial and temporal restriction of lens-forming potential in embryonic ectoderm of Xenopus laevis., Henry JJ., Dev Biol. November 1, 1987; 124 (1): 200-14.


Cell-type-specific expression of epidermal cytokeratin genes during gastrulation of Xenopus laevis., Jamrich M., Genes Dev. April 1, 1987; 1 (2): 124-32.                


Expression of Xenopus N-CAM RNA in ectoderm is an early response to neural induction., Kintner CR., Development. March 1, 1987; 99 (3): 311-25.                  


Neural cell adhesion molecule expression in Xenopus embryos., Balak K., Dev Biol. February 1, 1987; 119 (2): 540-50.              


The appearance and distribution of intermediate filament proteins during differentiation of the central nervous system, skin and notochord of Xenopus laevis., Godsave SF., J Embryol Exp Morphol. September 1, 1986; 97 201-23.              


Development of the ectoderm in Xenopus: tissue specification and the role of cell association and division., Jones EA., Cell. January 31, 1986; 44 (2): 345-55.                


Tissue interactions during axial structure pattern formation in amphibia., Malacinski GM., Scan Electron Microsc. January 1, 1986; (Pt 2): 307-18.


Development of a high-affinity GABA uptake system in embryonic amphibian spinal neurons., Lamborghini JE., Dev Biol. November 1, 1985; 112 (1): 167-76.


Regional specificity of glycoconjugates in Xenopus and axolotl embryos., Slack JM., J Embryol Exp Morphol. November 1, 1985; 89 Suppl 137-53.      


Peanut lectin receptors in the early amphibian embryo: regional markers for the study of embryonic induction., Slack JM., Cell. May 1, 1985; 41 (1): 237-47.


Regulation in the neural plate of Xenopus laevis demonstrated by genetic markers., Szaro B., J Exp Zool. April 1, 1985; 234 (1): 117-29.


The effect of calcitonin on the prechordal mesoderm, neural plate and neural crest of Xenopus embryos., Burgess AM., J Anat. January 1, 1985; 140 ( Pt 1) 49-55.


Alteration of the anterior-posterior embryonic axis: the pattern of gastrulation in macrocephalic frog embryos., Kao KR., Dev Biol. January 1, 1985; 107 (1): 239-51.


CNS effects of mechanically produced spina bifida., Katz MJ., Dev Med Child Neurol. October 1, 1984; 26 (5): 617-31.


Self-generated electrical currents through Xenopus neurulae., Robinson KR., J Physiol. July 1, 1984; 352 339-52.


A flow cytometric analysis of the embryonic origin of lymphocytes in diploid/triploid chimeric Xenopus laevis., Flajnik MF., Dev Biol. July 1, 1984; 104 (1): 247-54.


Regional distribution of polyadenylated mRNA in Xenopus laevis embryos., De Bernardi F., Exp Cell Biol. January 1, 1984; 52 (5): 333-8.


Axon number in oculomotor nerves in Xenopus: removal of one eye primordium affects both sides., Schönenberger N., Neurosci Lett. November 11, 1983; 41 (3): 239-45.


Dual contribution of embryonic ventral blood island and dorsal lateral plate mesoderm during ontogeny of hemopoietic cells in Xenopus laevis., Kau CL., J Immunol. November 1, 1983; 131 (5): 2262-6.


A rapid increase in acetylcholinesterase mRNA during ascidian embryogenesis as demonstrated by microinjection into Xenopus laevis oocytes., Perry HE., Cell Differ. November 1, 1983; 13 (3): 233-8.


Craniofacial malformation in Xenopus laevis tadpoles caused by the exposure of early embryos to ethanol., Nakatsuji N., Teratology. October 1, 1983; 28 (2): 299-305.


Clonal organization of the central nervous system of the frog. III. Clones stemming from individual blastomeres of the 128-, 256-, and 512-cell stages., Jacobson M., J Neurosci. May 1, 1983; 3 (5): 1019-38.


The developmental effect of calcitonin on the interocular distance in early Xenopus embryos., Burgess AM., J Anat. December 1, 1982; 135 (Pt 4): 745-51.


The development of connections between the isthmic nucleus and the tectum in Xenopus and Limnodynastes tadpoles., Dann JF., Neurosci Lett. November 30, 1982; 33 (2): 107-13.


Intracellular sodium and the differentiation of amphibian embryonic neurones., Breckenridge LJ., J Physiol. November 1, 1982; 332 393-413.

???pagination.result.page??? ???pagination.result.prev??? 17 18 19 20 21 22 23 24 25 26 27 28 ???pagination.result.next???