Results 1 - 50 of 117 results
In vitro modeling of cranial placode differentiation: Recent advances, challenges, and perspectives. , Griffin C., Dev Biol. February 1, 2024; 506 20-30.
Xenopus Ssbp2 is required for embryonic pronephros morphogenesis and terminal differentiation. , Cervino AS., Sci Rep. October 4, 2023; 13 (1): 16671.
Dynamic expression of MMP28 during cranial morphogenesis. , Gouignard N ., Philos Trans R Soc Lond B Biol Sci. October 12, 2020; 375 (1809): 20190559.
Metamorphic remodeling of the olfactory organ of the African clawed frog, Xenopus laevis. , Dittrich K., J Comp Neurol. April 1, 2016; 524 (5): 986-98.
Noggin 1 overexpression in retinal progenitors affects bipolar cell generation. , Messina A., Int J Dev Biol. January 1, 2016; 60 (4-6): 151-7.
Evolutionary Conservation of the Early Axon Scaffold in the Vertebrate Brain. , Ware M., Dev Dyn. October 1, 2015; 244 (10): 1202-14.
Microarray identification of novel genes downstream of Six1, a critical factor in cranial placode, somite, and kidney development. , Yan B ., Dev Dyn. February 1, 2015; 244 (2): 181-210.
A gene expression map of the larval Xenopus laevis head reveals developmental changes underlying the evolution of new skeletal elements. , Square T ., Dev Biol. January 15, 2015; 397 (2): 293-304.
Methylmercury exposure during early Xenopus laevis development affects cell proliferation and death but not neural progenitor specification. , Huyck RW ., Neurotoxicol Teratol. January 1, 2015; 47 102-13.
A Database of microRNA Expression Patterns in Xenopus laevis. , Ahmed A., PLoS One. January 1, 2015; 10 (10): e0138313.
Down syndrome cell adhesion molecule ( DSCAM) is important for early development in Xenopus tropicalis. , Morales Diaz HD ., Genesis. October 1, 2014; .
Maternal syntabulin is required for dorsal axis formation and is a germ plasm component in Xenopus. , Colozza G ., Differentiation. July 1, 2014; 88 (1): 17-26.
Evolution of the vertebrate Pax4/6 class of genes with focus on its novel member, the Pax10 gene. , Feiner N., Genome Biol Evol. June 19, 2014; 6 (7): 1635-51.
Distal expression of sprouty (spry) genes during Xenopus laevis limb development and regeneration. , Wang YH., Gene Expr Patterns. May 1, 2014; 15 (1): 61-6.
FoxA4 favours notochord formation by inhibiting contiguous mesodermal fates and restricts anterior neural development in Xenopus embryos. , Murgan S., PLoS One. January 1, 2014; 9 (10): e110559.
Developmental expression of Pitx2c in Xenopus trigeminal and profundal placodes. , Jeong YH., Int J Dev Biol. January 1, 2014; 58 (9): 701-4.
The Xenopus doublesex-related gene Dmrt5 is required for olfactory placode neurogenesis. , Parlier D., Dev Biol. January 1, 2013; 373 (1): 39-52.
Regulation of early xenopus embryogenesis by Smad ubiquitination regulatory factor 2. , Das S., Dev Dyn. August 1, 2012; 241 (8): 1260-73.
Mutual repression between Gbx2 and Otx2 in sensory placodes reveals a general mechanism for ectodermal patterning. , Steventon B ., Dev Biol. July 1, 2012; 367 (1): 55-65.
Median facial clefts in Xenopus laevis: roles of retinoic acid signaling and homeobox genes. , Kennedy AE ., Dev Biol. May 1, 2012; 365 (1): 229-40.
Williams Syndrome Transcription Factor is critical for neural crest cell function in Xenopus laevis. , Barnett C., Mech Dev. January 1, 2012; 129 (9-12): 324-38.
Identification and characterization of Xenopus kctd15, an ectodermal gene repressed by the FGF pathway. , Takahashi C ., Int J Dev Biol. January 1, 2012; 56 (5): 393-402.
Origin and segregation of cranial placodes in Xenopus laevis. , Pieper M., Dev Biol. December 15, 2011; 360 (2): 257-75.
Expression analysis of the peroxiredoxin gene family during early development in Xenopus laevis. , Shafer ME., Gene Expr Patterns. December 1, 2011; 11 (8): 511-6.
ARVCF depletion cooperates with Tbx1 deficiency in the development of 22q11.2DS-like phenotypes in Xenopus. , Tran HT., Dev Dyn. December 1, 2011; 240 (12): 2680-7.
Novel functions of Noggin proteins: inhibition of Activin/ Nodal and Wnt signaling. , Bayramov AV., Development. December 1, 2011; 138 (24): 5345-56.
pTransgenesis: a cross-species, modular transgenesis resource. , Love NR ., Development. December 1, 2011; 138 (24): 5451-8.
EBF proteins participate in transcriptional regulation of Xenopus muscle development. , Green YS., Dev Biol. October 1, 2011; 358 (1): 240-50.
Cell cycle-regulated multi-site phosphorylation of Neurogenin 2 coordinates cell cycling with differentiation during neurogenesis. , Ali F., Development. October 1, 2011; 138 (19): 4267-77.
Characterization of three synuclein genes in Xenopus laevis. , Wang C , Wang C , Wang C ., Dev Dyn. August 1, 2011; 240 (8): 2028-33.
V-ATPase-dependent ectodermal voltage and pH regionalization are required for craniofacial morphogenesis. , Vandenberg LN., Dev Dyn. August 1, 2011; 240 (8): 1889-904.
EBF factors drive expression of multiple classes of target genes governing neuronal development. , Green YS., Neural Dev. April 30, 2011; 6 19.
Transdifferentiation from cornea to lens in Xenopus laevis depends on BMP signalling and involves upregulation of Wnt signalling. , Day RC., BMC Dev Biol. January 26, 2011; 11 54.
Microarray identification of novel downstream targets of FoxD4L1/D5, a critical component of the neural ectodermal transcriptional network. , Yan B ., Dev Dyn. December 1, 2010; 239 (12): 3467-80.
The F-box protein Cdc4/ Fbxw7 is a novel regulator of neural crest development in Xenopus laevis. , Almeida AD., Neural Dev. January 4, 2010; 5 1.
Myosin-X is required for cranial neural crest cell migration in Xenopus laevis. , Hwang YS., Dev Dyn. October 1, 2009; 238 (10): 2522-9.
Cytoplasmic polyadenylation and cytoplasmic polyadenylation element-dependent mRNA regulation are involved in Xenopus retinal axon development. , Lin AC., Neural Dev. March 2, 2009; 4 8.
Early ontogeny of the olfactory organ in a basal actinopterygian fish: polypterus. , Zeiske E., Brain Behav Evol. January 1, 2009; 73 (4): 259-72.
Malectin: a novel carbohydrate-binding protein of the endoplasmic reticulum and a candidate player in the early steps of protein N-glycosylation. , Schallus T., Mol Biol Cell. August 1, 2008; 19 (8): 3404-14.
Pleiotropic effects in Eya3 knockout mice. , Söker T., BMC Dev Biol. June 23, 2008; 8 118.
Vertebrate CASTOR is required for differentiation of cardiac precursor cells at the ventral midline. , Christine KS ., Dev Cell. April 1, 2008; 14 (4): 616-23.
Cloning and developmental expression of the soxB2 genes, sox14 and sox21, during Xenopus laevis embryogenesis. , Cunningham DD ., Int J Dev Biol. January 1, 2008; 52 (7): 999-1004.
Identification and expression of XRTN1-A and XRTN1-C in Xenopus laevis. , Park EC ., Dev Dyn. December 1, 2007; 236 (12): 3545-53.
Wise retained in the endoplasmic reticulum inhibits Wnt signaling by reducing cell surface LRP6. , Guidato S., Dev Biol. October 15, 2007; 310 (2): 250-63.
Regulation of otic vesicle and hair cell stereocilia morphogenesis by Ena/ VASP-like ( Evl) in Xenopus. , Wanner SJ., J Cell Sci. August 1, 2007; 120 (Pt 15): 2641-51.
Cloning and expression of a zebrafish SCN1B ortholog and identification of a species-specific splice variant. , Fein AJ., BMC Genomics. May 16, 2007; 8 226.
The neural progenitor-specifying activity of FoxG1 is antagonistically regulated by CKI and FGF. , Regad T., Nat Cell Biol. May 1, 2007; 9 (5): 531-40.
Emerging roles for zic genes in early development. , Merzdorf CS ., Dev Dyn. April 1, 2007; 236 (4): 922-40.
Xenopus Zic4: conservation and diversification of expression profiles and protein function among the Xenopus Zic family. , Fujimi TJ ., Dev Dyn. December 1, 2006; 235 (12): 3379-86.
Xenopus Teashirt1 regulates posterior identity in brain and cranial neural crest. , Koebernick K., Dev Biol. October 1, 2006; 298 (1): 312-26.