Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (6354) Expression Attributions Wiki
XB-ANAT-254

Papers associated with oocyte (and gtf3a)

Limit to papers also referencing gene:
Show all oocyte papers
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2

Sort Newest To Oldest Sort Oldest To Newest

Differential binding of zinc fingers from Xenopus TFIIIA and p43 to 5S RNA and the 5S RNA gene., Darby MK., Mol Cell Biol. July 1, 1992; 12 (7): 3155-64.


Interaction of Xenopus TFIIIC with the TFIIIA.5 S RNA gene complex., Keller HJ., J Biol Chem. September 5, 1992; 267 (25): 18190-8.


Comparison of the sequence and structure of transcription factor IIIA from Bufo americanus and Rana pipiens., Gaskins CJ., Gene. October 21, 1992; 120 (2): 197-206.


Identification of nuclear factors which interact with the 5' flanking region of the EF-1 alpha O gene in Xenopus laevis., Olesen OF., FEBS Lett. November 30, 1992; 313 (3): 205-9.


Role of TFIIIA zinc fingers in vivo: analysis of single-finger function in developing Xenopus embryos., Rollins MB., Mol Cell Biol. August 1, 1993; 13 (8): 4776-83.


Masking mRNA from translation in somatic cells., Ranjan M., Genes Dev. September 1, 1993; 7 (9): 1725-36.


Proteolytic footprinting of transcription factor TFIIIA reveals different tightly binding sites for 5S RNA and 5S DNA., Bogenhagen DF., Mol Cell Biol. September 1, 1993; 13 (9): 5149-58.


Selective recruitment of masked maternal mRNA from messenger ribonucleoprotein particles containing FRGY2 (mRNP4)., Tafuri SR., J Biol Chem. November 15, 1993; 268 (32): 24255-61.


A position-dependent transcription-activating domain in TFIIIA., Mao X., Mol Cell Biol. December 1, 1993; 13 (12): 7496-506.


Specific regulation of Xenopus chromosomal 5S rRNA gene transcription in vivo by histone H1., Bouvet P., Genes Dev. May 15, 1994; 8 (10): 1147-59.


Purification and characterization of human transcription factor IIIA., Moorefield B., J Biol Chem. August 19, 1994; 269 (33): 20857-65.


Overlapping transcription by RNA polymerases II and III of the Xenopus TFIIIA gene in somatic cells., Martinez E., J Biol Chem. October 14, 1994; 269 (41): 25692-8.


Characterization of the 5 S RNA binding activity of Xenopus zinc finger protein p43., Zang WQ., J Mol Biol. February 3, 1995; 245 (5): 549-58.


Differential binding of oocyte-type and somatic-type 5S rRNA to TFIIIA and ribosomal protein L5 in Xenopus oocytes: specialization for storage versus mobilization., Allison LA., Dev Biol. April 1, 1995; 168 (2): 284-95.


Analysis of the binding of Xenopus transcription factor IIIA to oocyte 5 S rRNA and to the 5 S rRNA gene., Rawlings SL., J Biol Chem. January 12, 1996; 271 (2): 868-77.


Nucleoskeleton and nucleo-cytoplasmic transport in oocytes and early development of Xenopus laevis., Rudt F., Int J Dev Biol. February 1, 1996; 40 (1): 273-8.


Molecular biology of vertebrate transcription factor IIIA: cloning and characterization of TFIIIA from channel catfish oocytes., Ogilvie MK., Gene. December 12, 1997; 203 (2): 103-12.


Nucleosome translational position, not histone acetylation, determines TFIIIA binding to nucleosomal Xenopus laevis 5S rRNA genes., Howe L., Mol Cell Biol. March 1, 1998; 18 (3): 1156-62.


Role of histone H1 as an architectural determinant of chromatin structure and as a specific repressor of transcription on Xenopus oocyte 5S rRNA genes., Sera T., Mol Cell Biol. July 1, 1998; 18 (7): 3668-80.


Differential nucleosome positioning on Xenopus oocyte and somatic 5 S RNA genes determines both TFIIIA and H1 binding: a mechanism for selective H1 repression., Panetta G., J Mol Biol. September 25, 1998; 282 (3): 683-97.


Inhibition of RNA polymerase III transcription by a ribosome-associated kinase activity., Westmark CJ., Nucleic Acids Res. October 15, 1998; 26 (20): 4758-64.


Tight correlation between inhibition of DNA repair in vitro and transcription factor IIIA binding in a 5S ribosomal RNA gene., Conconi A., EMBO J. March 1, 1999; 18 (5): 1387-96.


Regulation of DNA binding activity and nuclear transport of B-Myb in Xenopus oocytes., Humbert-Lan G., J Biol Chem. April 9, 1999; 274 (15): 10293-300.                


How do linker histones mediate differential gene expression?, Crane-Robinson C., Bioessays. May 1, 1999; 21 (5): 367-71.


Assembly of the nuclear transcription and processing machinery: Cajal bodies (coiled bodies) and transcriptosomes., Gall JG., Mol Biol Cell. December 1, 1999; 10 (12): 4385-402.


cDNA cloning, DNA binding, and evolution of mammalian transcription factor IIIA., Hanas JS., Gene. January 9, 2002; 282 (1-2): 43-52.


Phosphorylation of Xenopus transcription factor IIIA by an oocyte protein kinase CK2., Westmark CJ., Biochem J. March 1, 2002; 362 (Pt 2): 375-82.


DNA methylation at promoter regions regulates the timing of gene activation in Xenopus laevis embryos., Stancheva I., Dev Biol. March 1, 2002; 243 (1): 155-65.        


A homolog of FBP2/KSRP binds to localized mRNAs in Xenopus oocytes., Kroll TT., Development. December 1, 2002; 129 (24): 5609-19.        


The Xenopus B2 factor involved in TFIIIA gene regulation is closely related to Sp1 and interacts in a complex with USF., Penberthy WT., Gene. February 27, 2003; 305 (2): 205-15.


VgRBP71 stimulates cleavage at a polyadenylation signal in Vg1 mRNA, resulting in the removal of a cis-acting element that represses translation., Kolev NG., Mol Cell. March 1, 2003; 11 (3): 745-55.              


Binding of zinc finger protein transcription factor IIIA to its cognate DNA sequence with single UV photoproducts at specific sites and its effect on DNA repair., Kwon Y., J Biol Chem. November 14, 2003; 278 (46): 45451-9.


Restricted specificity of Xenopus TFIIIA for transcription of somatic 5S rRNA genes., Ghose R., Mol Cell Biol. March 1, 2004; 24 (6): 2467-77.


Zn-, Cd-, and Pb-transcription factor IIIA: properties, DNA binding, and comparison with TFIIIA-finger 3 metal complexes., Huang M., J Inorg Biochem. May 1, 2004; 98 (5): 775-85.


Small ubiquitin-like modifier (SUMO)-mediated repression of the Xenopus Oocyte 5 S rRNA genes., Malik MQ., J Biol Chem. December 19, 2014; 289 (51): 35468-81.                


In vitro chromatin templates to study nucleotide excision repair., Liu X., DNA Repair (Amst). December 1, 2015; 36 68-76.


Differential nuclear import sets the timing of protein access to the embryonic genome., Nguyen T., Nat Commun. October 6, 2022; 13 (1): 5887.                                  

???pagination.result.page??? ???pagination.result.prev??? 1 2