Results 1 - 50 of 80 results
Genome-wide analysis of dorsal and ventral transcriptomes of the Xenopus laevis gastrula. , Ding Y ., Dev Biol. June 15, 2017; 426 (2): 176-187.
Notum is required for neural and head induction via Wnt deacylation, oxidation, and inactivation. , Zhang X., Dev Cell. March 23, 2015; 32 (6): 719-30.
Early stages of induction of anterior head ectodermal properties in Xenopus embryos are mediated by transcriptional cofactor ldb1. , Plautz CZ., Dev Dyn. December 1, 2014; 243 (12): 1606-18.
FoxA4 favours notochord formation by inhibiting contiguous mesodermal fates and restricts anterior neural development in Xenopus embryos. , Murgan S., PLoS One. October 2, 2014; 9 (10): e110559.
Ras-dva1 small GTPase regulates telencephalon development in Xenopus laevis embryos by controlling Fgf8 and Agr signaling at the anterior border of the neural plate. , Tereshina MB., Biol Open. March 15, 2014; 3 (3): 192-203.
Identification and evolution of molecular domains involved in differentiating the cement gland-promoting activity of Otx proteins in Xenopus laevis. , Mancini P ., Mech Dev. January 1, 2013; 130 (11-12): 628-39.
Plasma membrane cholesterol depletion disrupts prechordal plate and affects early forebrain patterning. , Reis AH., Dev Biol. May 15, 2012; 365 (2): 350-62.
ΔNp63 is regulated by BMP4 signaling and is required for early epidermal development in Xenopus. , Tríbulo C ., Dev Dyn. February 1, 2012; 241 (2): 257-69.
The dual regulator Sufu integrates Hedgehog and Wnt signals in the early Xenopus embryo. , Min TH., Dev Biol. October 1, 2011; 358 (1): 262-76.
Microarray identification of novel downstream targets of FoxD4L1/D5, a critical component of the neural ectodermal transcriptional network. , Yan B., Dev Dyn. December 1, 2010; 239 (12): 3467-80.
Bone morphogenetic protein 15 ( BMP15) acts as a BMP and Wnt inhibitor during early embryogenesis. , Di Pasquale E., J Biol Chem. September 18, 2009; 284 (38): 26127-36.
Xenopus SMOC-1 Inhibits bone morphogenetic protein signaling downstream of receptor binding and is essential for postgastrulation development in Xenopus. , Thomas JT ., J Biol Chem. July 10, 2009; 284 (28): 18994-9005.
Xenopus Sox3 activates sox2 and geminin and indirectly represses Xvent2 expression to induce neural progenitor formation at the expense of non-neural ectodermal derivatives. , Rogers CD., Mech Dev. January 1, 2009; 126 (1-2): 42-55.
Ethanol induces embryonic malformations by competing for retinaldehyde dehydrogenase activity during vertebrate gastrulation. , Kot-Leibovich H., Dis Model Mech. January 1, 2009; 2 (5-6): 295-305.
Retinoid signaling can repress blastula Wnt signaling and impair dorsal development in Xenopus embryo. , Li S., Differentiation. October 1, 2008; 76 (8): 897-907.
Cold-inducible RNA binding protein ( CIRP), a novel XTcf-3 specific target gene regulates neural development in Xenopus. , van Venrooy S ., BMC Dev Biol. August 7, 2008; 8 77.
Crossveinless-2 Is a BMP feedback inhibitor that binds Chordin/BMP to regulate Xenopus embryonic patterning. , Ambrosio AL., Dev Cell. August 1, 2008; 15 (2): 248-60.
Xenopus galectin-VIa shows highly specific expression in cement glands and is regulated by canonical Wnt signaling. , Michiue T ., Gene Expr Patterns. October 1, 2007; 7 (8): 852-7.
Characterization of the agr2 gene, a homologue of X. laevis anterior gradient 2, from the zebrafish, Danio rerio. , Shih LJ., Gene Expr Patterns. February 1, 2007; 7 (4): 452-60.
Smurf1 regulates neural patterning and folding in Xenopus embryos by antagonizing the BMP/ Smad1 pathway. , Alexandrova EM., Dev Biol. November 15, 2006; 299 (2): 398-410.
Effects of hypergravity environments on amphibian development, gene expression and apoptosis. , Kawakami S., Comp Biochem Physiol A Mol Integr Physiol. September 1, 2006; 145 (1): 65-72.
Xenopus Xotx2 and Drosophila otd share similar activities in anterior patterning of the frog embryo. , Lunardi A ., Dev Genes Evol. September 1, 2006; 216 (9): 511-21.
The MRH protein Erlectin is a member of the endoplasmic reticulum synexpression group and functions in N-glycan recognition. , Cruciat CM., J Biol Chem. May 5, 2006; 281 (18): 12986-93.
FGF8, Wnt8 and Myf5 are target genes of Tbx6 during anteroposterior specification in Xenopus embryo. , Li HY., Dev Biol. February 15, 2006; 290 (2): 470-81.
Tsukushi controls ectodermal patterning and neural crest specification in Xenopus by direct regulation of BMP4 and X-delta-1 activity. , Kuriyama S ., Development. January 1, 2006; 133 (1): 75-88.
BMP-3 is a novel inhibitor of both activin and BMP-4 signaling in Xenopus embryos. , Gamer LW., Dev Biol. September 1, 2005; 285 (1): 156-68.
XEpac, a guanine nucleotide-exchange factor for Rap GTPase, is a novel hatching gland specific marker during the Xenopus embryogenesis. , Lee SJ., Dev Dyn. April 1, 2005; 232 (4): 1091-7.
X-epilectin: a novel epidermal fucolectin regulated by BMP signalling. , Massé K ., Int J Dev Biol. December 1, 2004; 48 (10): 1119-29.
Neural induction in Xenopus: requirement for ectodermal and endomesodermal signals via Chordin, Noggin, beta-Catenin, and Cerberus. , Kuroda H ., PLoS Biol. May 1, 2004; 2 (5): E92.
Xenopus tropicalis nodal-related gene 3 regulates BMP signaling: an essential role for the pro-region. , Haramoto Y ., Dev Biol. January 1, 2004; 265 (1): 155-68.
Endogenous Cerberus activity is required for anterior head specification in Xenopus. , Silva AC ., Development. October 1, 2003; 130 (20): 4943-53.
A homologue of cysteine-rich secretory proteins induces premature degradation of vitelline envelopes and hatching of Xenopus laevis embryos. , Schambony A ., Mech Dev. August 1, 2003; 120 (8): 937-48.
Coordination of BMP-3b and cerberus is required for head formation of Xenopus embryos. , Hino J ., Dev Biol. August 1, 2003; 260 (1): 138-57.
Xenopus Cyr61 regulates gastrulation movements and modulates Wnt signalling. , Latinkic BV ., Development. June 1, 2003; 130 (11): 2429-41.
Xenopus X-box binding protein 1, a leucine zipper transcription factor, is involved in the BMP signaling pathway. , Zhao H ., Dev Biol. May 15, 2003; 257 (2): 278-91.
hAG-2 and hAG-3, human homologues of genes involved in differentiation, are associated with oestrogen receptor-positive breast tumours and interact with metastasis gene C4.4a and dystroglycan. , Fletcher GC., Br J Cancer. February 24, 2003; 88 (4): 579-85.
Chordin is required for the Spemann organizer transplantation phenomenon in Xenopus embryos. , Oelgeschläger M ., Dev Cell. February 1, 2003; 4 (2): 219-30.
The E3 ubiquitin ligase GREUL1 anteriorizes ectoderm during Xenopus development. , Borchers AG ., Dev Biol. November 15, 2002; 251 (2): 395-408.
Cement gland-specific activation of the Xag1 promoter is regulated by co-operation of putative Ets and ATF/ CREB transcription factors. , Wardle FC., Development. October 1, 2002; 129 (19): 4387-97.
otx2 expression in the ectoderm activates anterior neural determination and is required for Xenopus cement gland formation. , Gammill LS., Dev Biol. December 1, 2001; 240 (1): 223-36.
Neural and head induction by insulin-like growth factor signals. , Pera EM ., Dev Cell. November 1, 2001; 1 (5): 655-65.
Pitx1 and Pitx2c are required for ectopic cement gland formation in Xenopus laevis. , Schweickert A ., Genesis. July 1, 2001; 30 (3): 144-8.
Zebrafish nma is involved in TGFbeta family signaling. , Tsang M ., Genesis. October 1, 2000; 28 (2): 47-57.
Xotx5b, a new member of the Otx gene family, may be involved in anterior and eye development in Xenopus laevis. , Vignali R ., Mech Dev. August 1, 2000; 96 (1): 3-13.
Regulation and function of Dlx3 in vertebrate development. , Beanan MJ., Dev Dyn. August 1, 2000; 218 (4): 545-53.
Beta-catenin signaling activity dissected in the early Xenopus embryo: a novel antisense approach. , Heasman J ., Dev Biol. June 1, 2000; 222 (1): 124-34.
Cloning and expression of a novel zinc finger gene, Fez, transcribed in the forebrain of Xenopus and mouse embryos. , Matsuo-Takasaki M., Mech Dev. May 1, 2000; 93 (1-2): 201-4.
Cloning a novel developmental regulating gene, Xotx5: its potential role in anterior formation in Xenopus laevis. , Kuroda H ., Dev Growth Differ. April 1, 2000; 42 (2): 87-93.
OAZ uses distinct DNA- and protein-binding zinc fingers in separate BMP-Smad and Olf signaling pathways. , Hata A., Cell. January 21, 2000; 100 (2): 229-40.
FGF signaling and the anterior neural induction in Xenopus. , Hongo I., Dev Biol. December 15, 1999; 216 (2): 561-81.