Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (1738) Expression Attributions Wiki
XB-ANAT-15

Papers associated with midbrain

Limit to papers also referencing gene:
Results 1 - 50 of 1738 results

Page(s): 1 2 3 4 5 6 7 8 9 10 11 Next

Sort Newest To Oldest Sort Oldest To Newest

Bi-allelic ACBD6 variants lead to a neurodevelopmental syndrome with progressive and complex movement disorders., Kaiyrzhanov R., Brain. April 4, 2024; 147 (4): 1436-1456.                            


Brain enlargement with rostral bias in larvae from a spontaneously occurring female variant line of Xenopus; role of aberrant embryonic Wnt/β-catenin signaling., Hongo I., Cells Dev. April 3, 2024; 203918.                            


Development of a heat-stable alkaline phosphatase reporter system for cis-regulatory analysis and its application to 3D digital imaging of Xenopus embryonic tissues., Sakagami K., Dev Growth Differ. April 1, 2024; 66 (3): 256-265.        


Embryos assist morphogenesis of others through calcium and ATP signaling mechanisms in collective teratogen resistance., Tung A., Nat Commun. January 17, 2024; 15 (1): 535.                                


BRCA1 and ELK-1 regulate neural progenitor cell fate in the optic tectum in response to visual experience in Xenopus laevis tadpoles., Huang LC., Proc Natl Acad Sci U S A. January 16, 2024; 121 (3): e2316542121.                        


Characterization of Na+ currents regulating intrinsic excitability of optic tectal neurons., Thompson AC., Life Sci Alliance. January 1, 2024; 7 (1):                         


Prdm15 acts upstream of Wnt4 signaling in anterior neural development of Xenopus laevis., Saumweber E., Front Cell Dev Biol. January 1, 2024; 12 1316048.                            


Information integration during bioelectric regulation of morphogenesis of the embryonic frog brain., Manicka S., iScience. December 15, 2023; 26 (12): 108398.                                                        


Kdm7a expression is spatiotemporally regulated in developing Xenopus laevis embryos, and its overexpression influences late retinal development., Martini D., Dev Dyn. November 1, 2023;                                     


Functional odor map heterogeneity is based on multifaceted glomerular connectivity in larval Xenopus olfactory bulb., Offner T., iScience. September 15, 2023; 26 (9): 107518.                                  


β-Catenin and SOX2 Interaction Regulate Visual Experience-Dependent Cell Homeostasis in the Developing Xenopus Thalamus., Gao J., Int J Mol Sci. September 2, 2023; 24 (17):                 


The effects of the NMDAR co-agonist D-serine on the structure and function of optic tectal neurons in the developing visual system., Chorghay Z., Sci Rep. August 17, 2023; 13 (1): 13383.        


X-ray micro-computed tomography of Xenopus tadpole reveals changes in brain ventricular morphology during telencephalon regeneration., Ishii R., Dev Growth Differ. August 1, 2023; 65 (6): 300-310.                    


Cannabinoid receptor type 1 regulates sequential stages of migration and morphogenesis of neural crest cells and derivatives in chicken and frog embryos., Mahomed A., J Morphol. July 1, 2023; 284 (7): e21606.


BDNF signaling in correlation-dependent structural plasticity in the developing visual system., Kutsarova E., PLoS Biol. April 1, 2023; 21 (4): e3002070.          


Sub-chronic administration of fluoxetine does not alter prey-capture or predator avoidance behaviors in adult South African clawed frogs (Xenopus laevis)., Menon N., Behav Brain Res. March 28, 2023; 442 114317.


Characteristic tetraspanin expression patterns mark various tissues during early Xenopus development., Kuriyama S., Dev Growth Differ. February 1, 2023; 65 (2): 109-119.                


Neuronal membrane proteasomes regulate neuronal circuit activity in vivo and are required for learning-induced behavioral plasticity., He HY., Proc Natl Acad Sci U S A. January 17, 2023; 120 (3): e2216537120.                    


An Algorithm Based on a Cable-Nernst Planck Model Predicting Synaptic Activity throughout the Dendritic Arbor with Micron Specificity., Guerrier C., Neuroinformatics. January 1, 2023; 21 (1): 207-220.


A New Technical Approach for Cross-species Examination of Neuronal Wiring and Adult Neuron-glia Functions., Edwards-Faret G., Neuroscience. January 1, 2023; 508 40-51.


Novel predator-induced phenotypic plasticity by hemoglobin and physiological changes in the brain of Xenopus tropicalis., Mori T., Front Physiol. January 1, 2023; 14 1178869.


Metamorphic gene regulation programs in Xenopus tropicalis tadpole brain., Raj S., PLoS One. January 1, 2023; 18 (6): e0287858.                


Xenopus retinal ganglion cell axon extension is unaffected by 5-HT 1B/D receptor activation during visual system development., Basakis P., MicroPubl Biol. January 1, 2023; 2023


HCN2 channel-induced rescue of brain, eye, heart and gut teratogenesis caused by nicotine, ethanol and aberrant notch signalling., Pai VP., Wound Repair Regen. November 1, 2022; 30 (6): 681-706.                      


Tissue Rotation of the Xenopus Anterior-Posterior Neural Axis Reveals Profound but Transient Plasticity at the Mid-Gastrula Stage., Bolkhovitinov L., J Dev Biol. September 10, 2022; 10 (3):                           


Functions of block of proliferation 1 during anterior development in Xenopus laevis., Gärtner C., PLoS One. August 2, 2022; 17 (8): e0273507.                        


Xenopus Dusp6 modulates FGF signaling to precisely pattern pre-placodal ectoderm., Tsukano K., Dev Biol. August 1, 2022; 488 81-90.                          


A Focal Impact Model of Traumatic Brain Injury in Xenopus Tadpoles Reveals Behavioral Alterations, Neuroinflammation, and an Astroglial Response., Spruiell Eldridge SL., Int J Mol Sci. July 8, 2022; 23 (14):                         


Inducible and tissue-specific cell labeling in Cre-ERT2 transgenic Xenopus lines., Lin TY., Dev Growth Differ. June 1, 2022; 64 (5): 243-253.        


DSCAM is differentially patterned along the optic axon pathway in the developing Xenopus visual system and guides axon termination at the target., Santos RA., Neural Dev. April 15, 2022; 17 (1): 5.              


Transmembrane H+ fluxes and the regulation of neural induction in Xenopus laevis., Leung HC., Zygote. April 1, 2022; 30 (2): 267-278.        


Topographic map formation and the effects of NMDA receptor blockade in the developing visual system., Li VJ., Proc Natl Acad Sci U S A. February 22, 2022; 119 (8):                                   


Proteomic screen reveals diverse protein transport between connected neurons in the visual system., Schiapparelli LM., Cell Rep. January 25, 2022; 38 (4): 110287.                                  


Systematic mapping of rRNA 2'-O methylation during frog development and involvement of the methyltransferase Fibrillarin in eye and craniofacial development in Xenopus laevis., Delhermite J., PLoS Genet. January 18, 2022; 18 (1): e1010012.                                                              


Bulk Dye Loading for In Vivo Calcium Imaging of Visual Responses in Populations of Xenopus Tectal Neurons., Hogg PW., Cold Spring Harb Protoc. January 4, 2022; 2022 (1):


Temporal and spatial transcriptomic dynamics across brain development in Xenopus laevis tadpoles., Ta AC., G3 (Bethesda). January 4, 2022; 12 (1):               


The Ribosomal Protein L5 Functions During Xenopus Anterior Development Through Apoptotic Pathways., Schreiner C., Front Cell Dev Biol. January 1, 2022; 10 777121.                        


Epigenetic regulation of GABAergic differentiation in the developing brain., Gao J., Front Cell Neurosci. January 1, 2022; 16 988732.            


Role of locomotor efference copy in vertebrate gaze stabilization., Straka H., Front Neural Circuits. January 1, 2022; 16 1040070.            


An early midbrain sensorimotor pathway is involved in the timely initiation and direction of swimming in the hatchling Xenopus laevis tadpole., Larbi MC., Front Neural Circuits. January 1, 2022; 16 1027831.                


Galloway-Mowat syndrome: New insights from bioinformatics and expression during Xenopus embryogenesis., Treimer E., Gene Expr Patterns. December 1, 2021; 42 119215.                      


Identification of ZBTB26 as a Novel Risk Factor for Congenital Hypothyroidism., Vick P., Genes (Basel). November 24, 2021; 12 (12):                     


Electrophysiological Approaches to Studying Normal and Abnormal Retinotectal Circuit Development in the Xenopus Tadpole., Pratt KG., Cold Spring Harb Protoc. November 1, 2021; 2021 (11):


Tetrode Recording in the Xenopus laevis Visual System Using Multichannel Glass Electrodes., Hiramoto M., Cold Spring Harb Protoc. November 1, 2021; 2021 (11):


Neurophysiological and Behavioral Analysis in Xenopus., Szaro BG., Cold Spring Harb Protoc. November 1, 2021; 2021 (11):


The early development and physiology of Xenopus laevis tadpole lateral line system., Saccomanno V., J Neurophysiol. November 1, 2021; 126 (5): 1814-1830.


Deep learning is widely applicable to phenotyping embryonic development and disease., Naert T., Development. November 1, 2021; 148 (21):                                                                 


Sodium-calcium exchanger mediates sensory-evoked glial calcium transients in the developing retinotectal system., Benfey NJ., Cell Rep. October 5, 2021; 37 (1): 109791.                      


Conserved role of the urotensin II receptor 4 signalling pathway to control body straightness in a tetrapod., Alejevski F., Open Biol. August 1, 2021; 11 (8): 210065.                                    


Role of matrix metalloproteinase-9 in neurodevelopmental deficits and experience-dependent plasticity in Xenopus laevis., Gore SV., Elife. July 20, 2021; 10           

Page(s): 1 2 3 4 5 6 7 8 9 10 11 Next