Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (984) Expression Attributions Wiki
XB-ANAT-1564

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 9 10 11 12 13 14 15 16 17 18 19 20 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Xlcaax-1 is localized to the basolateral membrane of kidney tubule and other polarized epithelia during Xenopus development., Cornish JA., Dev Biol. March 1, 1992; 150 (1): 108-20.                  


Phylogeny of the third component of complement, C3: analysis of the conservation of human CR1, CR2, H, and B binding sites, concanavalin A binding sites, and thiolester bond in the C3 from different species., Alsenz J., Dev Comp Immunol. January 1, 1992; 16 (1): 63-76.


Pathways of NH3/NH4+ permeation across Xenopus laevis oocyte cell membrane., Burckhardt BC., Pflugers Arch. January 1, 1992; 420 (1): 83-6.


Proton transport mechanism in the cell membrane of Xenopus laevis oocytes., Burckhardt BC., Pflugers Arch. January 1, 1992; 420 (1): 78-82.


Joint toxic action of binary mixtures of osteolathyrogens at malformation-inducing concentrations for Xenopus embryos., Dawson DA., J Appl Toxicol. December 1, 1991; 11 (6): 415-21.


Evidence for direct estrogen regulation of the human gonadotropin-releasing hormone gene., Radovick S., J Clin Invest. November 1, 1991; 88 (5): 1649-55.


Interspecies comparisons of A/D ratios: A/D ratios are not constant across species., Daston GP., Fundam Appl Toxicol. November 1, 1991; 17 (4): 696-722.


Developmental and regional expression of thyroid hormone receptor genes during Xenopus metamorphosis., Kawahara A., Development. August 1, 1991; 112 (4): 933-43.            


Distribution of galanin-like immunoreactivity in the brain of Rana esculenta and Xenopus laevis., Lázár GY., J Comp Neurol. August 1, 1991; 310 (1): 45-67.                                                              


Retinoic acid modifies the pattern of cell differentiation in the central nervous system of neurula stage Xenopus embryos., Ruiz i Altaba A., Development. August 1, 1991; 112 (4): 945-58.                


Localized and inducible expression of Xenopus-posterior (Xpo), a novel gene active in early frog embryos, encoding a protein with a 'CCHC' finger domain., Sato SM., Development. July 1, 1991; 112 (3): 747-53.            


Thyrotropin-releasing hormone facilitates display of reproductive behavior and locomotor behavior in an amphibian., Taylor JA., Horm Behav. June 1, 1991; 25 (2): 128-36.


Expression of Madin-Darby canine kidney cell Na(+)-and Cl(-)-dependent taurine transporter in Xenopus laevis oocytes., Uchida S., J Biol Chem. May 25, 1991; 266 (15): 9605-9.


Na+ channel activity in cultured renal (A6) epithelium: regulation by solution osmolarity., Wills NK., J Membr Biol. April 1, 1991; 121 (1): 79-90.


Characterization of stretch-activated ion channels in Xenopus oocytes., Yang XC., J Physiol. December 1, 1990; 431 103-22.


Correlated onset and patterning of proopiomelanocortin gene expression in embryonic Xenopus brain and pituitary., Hayes WP., Development. November 1, 1990; 110 (3): 747-57.              


The Xenopus XIHbox 6 homeo protein, a marker of posterior neural induction, is expressed in proliferating neurons., Wright CV., Development. May 1, 1990; 109 (1): 225-34.                


Dorsomedial telencephalon of lungfishes: a pallial or subpallial structure? Criteria based on histology, connectivity, and histochemistry., von Bartheld CS., J Comp Neurol. April 1, 1990; 294 (1): 14-29.


Thyroxine-dependent modulations of the expression of the neural cell adhesion molecule N-CAM during Xenopus laevis metamorphosis., Levi G., Development. April 1, 1990; 108 (4): 681-92.                


Biochemical study of prolactin binding sites in Xenopus laevis brain and choroid plexus., Muccioli G., J Exp Zool. March 1, 1990; 253 (3): 311-8.


Comparative neuroanatomy of the histaminergic system in the brain of the frog Xenopus laevis., Airaksinen MS., J Comp Neurol. February 15, 1990; 292 (3): 412-23.


A two-step model for the localization of maternal mRNA in Xenopus oocytes: involvement of microtubules and microfilaments in the translocation and anchoring of Vg1 mRNA., Yisraeli JK., Development. February 1, 1990; 108 (2): 289-98.              


A stretch-activated K+ channel in the basolateral membrane of Xenopus kidney proximal tubule cells., Kawahara K., Pflugers Arch. February 1, 1990; 415 (5): 624-9.


Cleavage plane determination in amphibian eggs., Sawai T., Ann N Y Acad Sci. January 1, 1990; 582 40-9.


Inhibin and related proteins: localization, regulation, and effects., de Jong FH., Adv Exp Med Biol. January 1, 1990; 274 271-93.


Selective expression of an amiloride-inhibitable Na+ conductance from mRNA of respiratory epithelium in Xenopus laevis oocytes., Kroll B., Am J Physiol. October 1, 1989; 257 (4 Pt 1): L284-8.


Neurons expressing thyrotropin-releasing hormone-like messenger ribonucleic acid are widely distributed in Xenopus laevis brain., Zoeller RT., Gen Comp Endocrinol. October 1, 1989; 76 (1): 139-46.      


The nervus terminalis in larval and adult Xenopus laevis., Hofmann MH., Dev Biol. September 25, 1989; 498 (1): 167-9.


Distribution of alpha 2, alpha 3, alpha 4, and beta 2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: a hybridization histochemical study in the rat., Wada E., J Comp Neurol. June 8, 1989; 284 (2): 314-35.


A whole-mount immunocytochemical analysis of the expression of the intermediate filament protein vimentin in Xenopus., Dent JA., Development. January 1, 1989; 105 (1): 61-74.                      


The anatomical substrate for telencephalic function., Veenman CL., Adv Anat Embryol Cell Biol. January 1, 1989; 117 1-110.


Central projections of the nervus terminalis in four species of amphibians., Hofmann MH., Brain Behav Evol. January 1, 1989; 34 (5): 301-7.


Temporal pattern of appearance and distribution of cholecystokinin-like peptides during development in Xenopus laevis., Scalise FW., Gen Comp Endocrinol. November 1, 1988; 72 (2): 303-11.    


Immunocytochemical identification of non-neuronal intermediate filament proteins in the developing Xenopus laevis nervous system., Szaro BG., Dev Biol. October 1, 1988; 471 (2): 207-24.                    


Immunocytochemical and morphological evidence for a retinopetal projection in anuran amphibians., Uchiyama H., J Comp Neurol. August 1, 1988; 274 (1): 48-59.


Microinjection of synthetic Xhox-1A homeobox mRNA disrupts somite formation in developing Xenopus embryos., Harvey RP., Cell. June 3, 1988; 53 (5): 687-97.              


Expression and segregation of nucleoplasmin during development in Xenopus., Litvin J., Development. January 1, 1988; 102 (1): 9-21.                    


Activation of the primary kinetic modes of large- and small-conductance cholinergic ion channels in Xenopus myocytes., Auerbach A., J Physiol. December 1, 1987; 393 437-66.


Immunocytochemical studies of vasotocin, mesotocin, and neurophysins in the Xenopus hypothalamo-neurohypophysial system., Conway KM., J Comp Neurol. October 22, 1987; 264 (4): 494-508.


Effects of substitution of putative transmembrane segments on nicotinic acetylcholine receptor function., Tobimatsu T., FEBS Lett. September 28, 1987; 222 (1): 56-62.


Chloride-thiocyanate interactions in frog muscle anion-conducting channels at pH 5., Vaughan PC., Pflugers Arch. September 1, 1987; 410 (1-2): 153-8.


Immunocytochemical analysis of proenkephalin-derived peptides in the amphibian hypothalamus and optic tectum., Merchenthaler I., Dev Biol. July 28, 1987; 416 (2): 219-27.    


Development of substance P-like immunoreactivity in Xenopus embryos., Gallagher BC., J Comp Neurol. June 8, 1987; 260 (2): 175-85.


Single olfactory organ associated with prosencephalic malformation and cyclopia in a Xenopus laevis tadpole., Magrassi L., Dev Biol. June 2, 1987; 412 (2): 386-90.


Effect of tetraploidy on dendritic branching in neurons and glial cells of the frog, Xenopus laevis., Szaro BG., J Comp Neurol. April 8, 1987; 258 (2): 304-16.


Neurogenesis in the vocalization pathway of Xenopus laevis., Gorlick DL., J Comp Neurol. March 22, 1987; 257 (4): 614-27.


Immunocytochemical localization and spatial relation to the adenohypophysis of a somatostatin-like and a corticotropin-releasing factor-like peptide in the brain of four amphibian species., Olivereau M., Cell Tissue Res. February 1, 1987; 247 (2): 317-24.


An NPY-like peptide may function as MSH-release inhibiting factor in Xenopus laevis., Verburg-van Kemenade BM., Peptides. January 1, 1987; 8 (1): 61-7.


Heterogeneous kinetic properties of acetylcholine receptor channels in Xenopus myocytes., Auerbach A., J Physiol. September 1, 1986; 378 119-40.


The appearance and distribution of intermediate filament proteins during differentiation of the central nervous system, skin and notochord of Xenopus laevis., Godsave SF., J Embryol Exp Morphol. September 1, 1986; 97 201-23.              

???pagination.result.page??? ???pagination.result.prev??? 9 10 11 12 13 14 15 16 17 18 19 20 ???pagination.result.next???