Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (121) Expression Attributions Wiki
XB-ANAT-3500

Papers associated with choroid

Limit to papers also referencing gene:
Results 1 - 50 of 121 results

Page(s): 1 2 3 Next

Sort Newest To Oldest Sort Oldest To Newest

Revealing mitf functions and visualizing allografted tumor metastasis in colorless and immunodeficient Xenopus tropicalis., Ran R., Commun Biol. March 5, 2024; 7 (1): 275.                                


X-ray micro-computed tomography of Xenopus tadpole reveals changes in brain ventricular morphology during telencephalon regeneration., Ishii R., Dev Growth Differ. August 1, 2023; 65 (6): 300-310.                    


Ocular microvasculature in adult Xenopus laevis: Scanning electron microscopy of vascular casts., Lametschwandtner A., J Morphol. March 1, 2023; 284 (3): e21561.                            


The highly conserved FOXJ1 target CFAP161 is dispensable for motile ciliary function in mouse and Xenopus., Beckers A., Sci Rep. June 25, 2021; 11 (1): 13333.                    


Neural tube closure requires the endocytic receptor Lrp2 and its functional interaction with intracellular scaffolds., Kowalczyk I., Development. January 26, 2021; 148 (2):                                   


In Xenopus ependymal cilia drive embryonic CSF circulation and brain development independently of cardiac pulsatile forces., Dur AH., Fluids Barriers CNS. December 11, 2020; 17 (1): 72.                  


The FOXJ1 target Cfap206 is required for sperm motility, mucociliary clearance of the airways and brain development., Beckers A., Development. June 15, 2020; 147 (21):                                       


CFAP43 modulates ciliary beating in mouse and Xenopus., Rachev E., Dev Biol. March 15, 2020; 459 (2): 109-125.                                                                    


RBL1 (p107) functions as tumor suppressor in glioblastoma and small-cell pancreatic neuroendocrine carcinoma in Xenopus tropicalis., Naert T., Oncogene. March 1, 2020; 39 (13): 2692-2706.          


Mutations in Kinesin family member 6 reveal specific role in ependymal cell ciliogenesis and human neurological development., Konjikusic MJ., PLoS Genet. November 6, 2018; 14 (11): e1007817.              


The evolutionary conserved FOXJ1 target gene Fam183b is essential for motile cilia in Xenopus but dispensable for ciliary function in mice., Beckers A., Sci Rep. October 2, 2018; 8 (1): 14678.            


Microvascular anatomy of the brain of the adult pipid frog, Xenopus laevis (Daudin): A scanning electron microscopic study of vascular corrosion casts., Lametschwandtner A., J Morphol. July 1, 2018; 279 (7): 950-969.                                                                                              


Cotransporter-mediated water transport underlying cerebrospinal fluid formation., Steffensen AB., Nat Commun. June 4, 2018; 9 (1): 2167.              


A model for investigating developmental eye repair in Xenopus laevis., Kha CX., Exp Eye Res. April 1, 2018; 169 38-47.                


Upregulation of matrix metalloproteinase triggers transdifferentiation of retinal pigmented epithelial cells in Xenopus laevis: A Link between inflammatory response and regeneration., Naitoh H., Dev Neurobiol. September 1, 2017; 77 (9): 1086-1100.                


Retinal Degeneration and Regeneration-Lessons From Fishes and Amphibians., Ail D., Curr Pathobiol Rep. January 1, 2017; 5 (1): 67-78.  


CRISPR/Cas9 mediated knockout of rb1 and rbl1 leads to rapid and penetrant retinoblastoma development in Xenopus tropicalis., Naert T., Sci Rep. October 14, 2016; 6 35264.                          


Understanding How the Subcommissural Organ and Other Periventricular Secretory Structures Contribute via the Cerebrospinal Fluid to Neurogenesis., Guerra MM., Front Cell Neurosci. September 23, 2015; 9 480.                


Differential cellular expression of organic anion transporting peptides OATP1A2 and OATP2B1 in the human retina and brain: implications for carrier-mediated transport of neuropeptides and neurosteriods in the CNS., Gao B., Pflugers Arch. July 1, 2015; 467 (7): 1481-1493.


The chicken left right organizer has nonmotile cilia which are lost in a stage-dependent manner in the talpid(3) ciliopathy., Stephen LA., Genesis. June 1, 2014; 52 (6): 600-13.            


Fgfr signaling is required as the early eye field forms to promote later patterning and morphogenesis of the eye., Atkinson-Leadbeater K., Dev Dyn. May 1, 2014; .              


KCNQ1, KCNE2, and Na+-coupled solute transporters form reciprocally regulating complexes that affect neuronal excitability., Abbott GW., Sci Signal. March 4, 2014; 7 (315): ra22.


Magnetic nanoparticles as intraocular drug delivery system to target retinal pigmented epithelium (RPE)., Giannaccini M., Int J Mol Sci. January 22, 2014; 15 (1): 1590-605.                


Upregulation of KCNQ1/KCNE1 K+ channels by Klotho., Almilaji A., Channels (Austin). January 1, 2014; 8 (3): 222-9.


Expression profile of the aromatase enzyme in the Xenopus brain and localization of estradiol and estrogen receptors in each tissue., Iwabuchi J., Gen Comp Endocrinol. December 1, 2013; 194 286-94.            


Bcl6a function is required during optic cup formation to prevent p53-dependent apoptosis and colobomata., Lee J., Hum Mol Genet. September 1, 2013; 22 (17): 3568-82.


Loss of cell-extracellular matrix interaction triggers retinal regeneration accompanied by Rax and Pax6 activation., Nabeshima A., Genesis. June 1, 2013; 51 (6): 410-9.            


Ciliogenesis and cerebrospinal fluid flow in the developing Xenopus brain are regulated by foxj1., Hagenlocher C., Cilia. April 29, 2013; 2 (1): 12.                  


Klotho sensitivity of the neuronal excitatory amino acid transporters EAAT3 and EAAT4., Almilaji A., PLoS One. January 1, 2013; 8 (7): e70988.          


Role of the blood-cerebrospinal fluid barrier transporter as a cerebral clearance system for prostaglandin E₂ produced in the brain., Tachikawa M., J Neurochem. December 1, 2012; 123 (5): 750-60.


A clearance system for prostaglandin D2, a sleep-promoting factor, in cerebrospinal fluid: role of the blood-cerebrospinal barrier transporters., Tachikawa M., J Pharmacol Exp Ther. December 1, 2012; 343 (3): 608-16.


Transgenic Xenopus laevis with the ef1-α promoter as an experimental tool for amphibian retinal regeneration study., Ueda Y., Genesis. August 1, 2012; 50 (8): 642-50.            


Ciliary and non-ciliary expression and function of PACRG during vertebrate development., Thumberger T., Cilia. August 1, 2012; 1 (1): 13.                        


Visualisation of cerebrospinal fluid flow patterns in albino Xenopus larvae in vivo., Mogi K., Fluids Barriers CNS. April 25, 2012; 9 9.          


Claudin-5 expression in the vasculature of the developing chick embryo., Collins MM., Gene Expr Patterns. January 1, 2012; 12 (3-4): 123-9.        


Activity-based labeling of matrix metalloproteinases in living vertebrate embryos., Keow JY., PLoS One. January 1, 2012; 7 (8): e43434.              


Novel strategy for subretinal delivery in Xenopus., Gonzalez-Fernandez F., Mol Vis. March 23, 2011; 17 2956-69.                      


Transdifferentiation from cornea to lens in Xenopus laevis depends on BMP signalling and involves upregulation of Wnt signalling., Day RC., BMC Dev Biol. January 26, 2011; 11 54.                                                


Analysis of the expression of retinoic acid metabolising genes during Xenopus laevis organogenesis., Lynch J., Gene Expr Patterns. January 1, 2011; 11 (1-2): 112-7.                              


Purinergic receptor-mediated Ca signaling in the olfactory bulb and the neurogenic area of the lateral ventricles., Hassenklöver T., Purinergic Signal. December 1, 2010; 6 (4): 429-45.                


Distribution of NBCn2 (SLC4A10) splice variants in mouse brain., Liu Y., Neuroscience. September 1, 2010; 169 (3): 951-64.


Mast cells in the amphibian brain during development., Pinelli C., J Anat. March 1, 2010; 216 (3): 397-406.


Complete reconstruction of the retinal laminar structure from a cultured retinal pigment epithelium is triggered by altered tissue interaction and promoted by overlaid extracellular matrices., Kuriyama F., Dev Neurobiol. December 1, 2009; 69 (14): 950-8.          


Inhibition of aquaporin-1 and aquaporin-4 water permeability by a derivative of the loop diuretic bumetanide acting at an internal pore-occluding binding site., Migliati E., Mol Pharmacol. July 1, 2009; 76 (1): 105-12.


Retinal regeneration in the Xenopus laevis tadpole: a new model system., Vergara MN., Mol Vis. May 18, 2009; 15 1000-13.          


Expression and possible role of creatine transporter in the brain and at the blood-cerebrospinal fluid barrier as a transporting protein of guanidinoacetate, an endogenous convulsant., Tachikawa M., J Neurochem. November 1, 2008; 107 (3): 768-78.


The blood-cerebrospinal fluid barrier is a major pathway of cerebral creatinine clearance: involvement of transporter-mediated process., Tachikawa M., J Neurochem. October 1, 2008; 107 (2): 432-42.


Molecular mechanism of dipeptide and drug transport by the human renal H+/oligopeptide cotransporter hPEPT2., Sala-Rabanal M., Am J Physiol Renal Physiol. June 1, 2008; 294 (6): F1422-32.


Expression and localization of Na-driven Cl-HCO(3)(-) exchanger (SLC4A8) in rodent CNS., Chen LM., Neuroscience. April 22, 2008; 153 (1): 162-74.


Use of a new polyclonal antibody to study the distribution and glycosylation of the sodium-coupled bicarbonate transporter NCBE in rodent brain., Chen LM., Neuroscience. January 24, 2008; 151 (2): 374-85.

Page(s): 1 2 3 Next