Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (10397) Expression Attributions Wiki
XB-ANAT-111

Papers associated with embryo

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Cloning, localization, and functional expression of a human brain inward rectifier potassium channel (hIRK1)., Tang W., Recept Channels. January 1, 1995; 3 (3): 175-83.


The concentrations of AcSDKP, a physiological inhibitor of cell proliferation, vary during oogenesis and early development in Xenopus laevis., Volkov L., Biol Cell. January 1, 1995; 85 (2-3): 223-5.


Cortical cytoskeleton of the Xenopus oocyte, egg, and early embryo., Larabell CA., Curr Top Dev Biol. January 1, 1995; 31 433-53.


Spatial expression of two tadpole stage specific myosin heavy chains in Xenopus laevis., Radice GP., Acta Anat (Basel). January 1, 1995; 153 (4): 254-62.


Two isoforms of Xenopus retinoic acid receptor gamma 2 (B) exhibit differential expression and sensitivity to retinoic acid during embryogenesis., Crawford MJ., Dev Genet. January 1, 1995; 17 (4): 291-302.


Cloning and expression of a 5HT7 receptor from Xenopus laevis., Nelson CS., Recept Channels. January 1, 1995; 3 (1): 61-70.


A Xenopus laevis gene encoding EF-1 alpha S, the somatic form of elongation factor 1 alpha: sequence, structure, and identification of regulatory elements required for embryonic transcription., Johnson AD., Dev Genet. January 1, 1995; 17 (3): 280-90.


Neural induction and neurogenesis in amphibian embryos., Chitnis A., Perspect Dev Neurobiol. January 1, 1995; 3 (1): 3-15.


Patterns of localization and cytoskeletal association of two vegetally localized RNAs, Vg1 and Xcat-2., Forristall C., Development. January 1, 1995; 121 (1): 201-8.          


Regulation of the Xenopus labial homeodomain genes, HoxA1 and HoxD1: activation by retinoids and peptide growth factors., Kolm PJ., Dev Biol. January 1, 1995; 167 (1): 34-49.      


Evidence that MIF plays a role in the development of pigmentation patterns in the frog., Fukuzawa T., Dev Biol. January 1, 1995; 167 (1): 148-58.


Evolution of specific antigen recognition: size reduction and restricted length distribution of the CDRH3 regions in the rainbow trout., Roman T., Eur J Immunol. January 1, 1995; 25 (1): 269-73.


Overexpression of synaptophysin enhances neurotransmitter secretion at Xenopus neuromuscular synapses., Alder J., J Neurosci. January 1, 1995; 15 (1 Pt 2): 511-9.            


Evidence for involvement of activin A and bone morphogenetic protein 4 in mammalian mesoderm and hematopoietic development., Johansson BM., Mol Cell Biol. January 1, 1995; 15 (1): 141-51.


Stimulation of circus movement by activin, bFGF and TGF-beta 2 in isolated animal cap cells of Xenopus laevis., Minoura I., Mech Dev. January 1, 1995; 49 (1-2): 65-9.


A homeobox gene involved in node, notochord and neural plate formation of chick embryos., Stein S., Mech Dev. January 1, 1995; 49 (1-2): 37-48.


Molecular cloning of Xenopus HGF cDNA and its expression studies in Xenopus early embryogenesis., Nakamura H., Mech Dev. January 1, 1995; 49 (1-2): 123-31.


Estimation of water content and water mobility in the nucleus and cytoplasm of Xenopus laevis oocytes by NMR microscopy., Päuser S., Magn Reson Imaging. January 1, 1995; 13 (2): 269-76.


Nucleolar localisation of three Hox homeoproteins., Corsetti MT., J Cell Sci. January 1, 1995; 108 ( Pt 1) 187-93.          


Xenopus laevis: a model system for the study of embryonic retinoid metabolism. II. Embryonic metabolism of all-trans-3,4-didehydroretinol to all-trans-3,4-didehydroretinoic acid., Creech Kraft J., Drug Metab Dispos. January 1, 1995; 23 (1): 83-9.


Xenopus laevis: a model system for the study of embryonic retinoid metabolism. I. Embryonic metabolism of 9-cis- and all-trans-retinals and retinols to their corresponding acid forms., Kraft JC., Drug Metab Dispos. January 1, 1995; 23 (1): 72-82.


Comparison of mesoderm-inducing activity with monomeric and dimeric inhibin alpha and beta-A subunits on Xenopus ectoderm., Nakano H., Horm Res. January 1, 1995; 44 Suppl 2 15-22.


Homology between mitochondriogenesis in the avian and amphibian oocyte., D'Herde K., Reprod Nutr Dev. January 1, 1995; 35 (3): 305-11.


Calcium puffs in Xenopus oocytes., Parker I., Ciba Found Symp. January 1, 1995; 188 50-60; discussion 60-5.


Widespread expression of the eve1 gene in zebrafish embryos affects the anterior-posterior axis pattern., Barro O., Dev Genet. January 1, 1995; 17 (2): 117-28.


Cloning and characterization of Wnt-4 and Wnt-11 cDNAs from chick embryo., Tanda N., DNA Seq. January 1, 1995; 5 (5): 277-81.


Epithelial-mesenchymal signaling during tooth development., Thesleff I., Connect Tissue Res. January 1, 1995; 32 (1-4): 9-15.


Ventral mesodermal patterning in Xenopus embryos: expression patterns and activities of BMP-2 and BMP-4., Hemmati-Brivanlou A., Dev Genet. January 1, 1995; 17 (1): 78-89.


Translational control of activin in Xenopus laevis embryos., Klein PS., Dev Genet. January 1, 1995; 17 (1): 55-64.


Frog embryo teratogenesis assay. Xenopus (FETAX)., Davies WJ., Methods Mol Biol. January 1, 1995; 43 311-6.


Critical periods of early development created by the coordinate modulation of ion channel properties., Moody WJ., Perspect Dev Neurobiol. January 1, 1995; 2 (4): 309-15.


Mesoderm formation in response to Brachyury requires FGF signalling., Schulte-Merker S., Curr Biol. January 1, 1995; 5 (1): 62-7.


Regionalization of the forebrain from neural plate to neural tube., Papalopulu N., Perspect Dev Neurobiol. January 1, 1995; 3 (1): 39-52.


Transcription patterns of four different fork head/HNF-3 related genes (XFD-4, 6, 9 and 10) in Xenopus laevis embryos., Scheucher M., Rouxs Arch Dev Biol. January 1, 1995; 204 (3): 203-211.


Fission yeast tmsl protein abrogates normal development in Xenopus laevis embryos., Wagner P., Rouxs Arch Dev Biol. January 1, 1995; 204 (3): 198-202.


Different spatial distribution of mRNAs for activin receptors (type IIA and IIB) and follistatin in developing embryos of Xenopus laevis., Koga C., Rouxs Arch Dev Biol. January 1, 1995; 204 (3): 172-179.


Oscillation of inositol polyphosphates in the embryonic cleavage cycle of the Xenopus laevis., Han JK., Biochem Biophys Res Commun. January 17, 1995; 206 (2): 775-80.


Involvement of brainstem serotonergic interneurons in the development of a vertebrate spinal locomotor circuit., Sillar KT., Proc Biol Sci. January 23, 1995; 259 (1354): 65-70.


Molecular cloning and characterization of an aquaporin cDNA from salivary, lacrimal, and respiratory tissues., Raina S., J Biol Chem. January 27, 1995; 270 (4): 1908-12.


An inductive role for the endoderm in Xenopus cardiogenesis., Nascone N., Development. February 1, 1995; 121 (2): 515-23.


Expression of a dominant negative inhibitor of intercellular communication in the early Xenopus embryo causes delamination and extrusion of cells., Paul DL., Development. February 1, 1995; 121 (2): 371-81.


Hox genes and the evolution of vertebrate axial morphology., Burke AC., Development. February 1, 1995; 121 (2): 333-46.    


Accelerated structural maturation induced by synapsin I at developing neuromuscular synapses of Xenopus laevis., Valtorta F., Eur J Neurosci. February 1, 1995; 7 (2): 261-70.            


Quantal puffs of intracellular Ca2+ evoked by inositol trisphosphate in Xenopus oocytes., Yao Y., J Physiol. February 1, 1995; 482 ( Pt 3) 533-53.


XIdx, a dominant negative regulator of bHLH function in early Xenopus embryos., Wilson R., Mech Dev. February 1, 1995; 49 (3): 211-22.          


Cell migration from the transplanted olfactory placode in Xenopus., Koo H., Anat Embryol (Berl). February 1, 1995; 191 (2): 171-81.


Eye primordium transplantation in Xenopus embryo., Koo H., Anat Embryol (Berl). February 1, 1995; 191 (2): 155-70.


Two distinct pathways for the localization of RNAs at the vegetal cortex in Xenopus oocytes., Kloc M., Development. February 1, 1995; 121 (2): 287-97.              


Activin induces the expression of the Xenopus homologue of sonic hedgehog during mesoderm formation in Xenopus explants., Yokotal C., Biochem Biophys Res Commun. February 6, 1995; 207 (1): 1-7.      


The SH2-containing protein-tyrosine phosphatase SH-PTP2 is required upstream of MAP kinase for early Xenopus development., Tang TL., Cell. February 10, 1995; 80 (3): 473-83.              

???pagination.result.page??? ???pagination.result.prev??? 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 ???pagination.result.next???