Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Stage Literature (24) Attributions Wiki

Papers associated with NF stage 64

Limit to papers also referencing gene:
Results 1 - 24 of 24 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

Microvascularization of the spleen in larval and adult Xenopus laevis: Histomorphology and scanning electron microscopy of vascular corrosion casts., Lametschwandtner A, Radner C, Minnich B., J Morphol. December 1, 2016; 277 (12): 1559-1569.

Maturation of the gastric microvasculature in Xenopus laevis (Lissamphibia, Anura) occurs at the transition from the herbivorous to the carnivorous lifestyle, predominantly by intussuceptive microvascular growth (IMG): a scanning electron microscope study of microvascular corrosion casts and correlative light microscopy., Lametschwandtner A, Höll M, Bartel H, Anupunpisit V, Minnich B., Anat Sci Int. June 1, 2012; 87 (2): 88-100.                    

Characterization of a novel type I keratin gene and generation of transgenic lines with fluorescent reporter genes driven by its promoter/enhancer in Xenopus laevis., Suzuki KT, Kashiwagi K, Ujihara M, Marukane T, Tazaki A, Watanabe K, Mizuno N, Ueda Y, Kondoh H, Kashiwagi A, Mochii M., Dev Dyn. December 1, 2010; 239 (12): 3172-81.                  

Centroid, a novel putative DEAD-box RNA helicase maternal mRNA, is localized in the mitochondrial cloud in Xenopus laevis oocytes., Kloc M, Chan AP., Int J Dev Biol. January 1, 2007; 51 (8): 701-6.      

Developmental and regional expression of NADPH-diaphorase/nitric oxide synthase in spinal cord neurons correlates with the emergence of limb motor networks in metamorphosing Xenopus laevis., Ramanathan S, Combes D, Molinari M, Simmers J, Sillar KT., Eur J Neurosci. October 1, 2006; 24 (7): 1907-22.                  

Larval antigen molecules recognized by adult immune cells of inbred Xenopus laevis: partial characterization and implication in metamorphosis., Izutsu Y, Tochinai S, Maéno M, Iwabuchi K, Onoé K., Dev Growth Differ. December 1, 2002; 44 (6): 477-88.            

Multiple thyroid hormone-induced muscle growth and death programs during metamorphosis in Xenopus laevis., Das B, Schreiber AM, Huang H, Brown DD., Proc Natl Acad Sci U S A. September 17, 2002; 99 (19): 12230-5.          

Autonomous regulation of muscle fibre fate during metamorphosis in Xenopus tropicalis., Rowe I, Coen L, Le Blay K, Le Mével S, Demeneix BA., Dev Dyn. August 1, 2002; 224 (4): 381-90.

Loss of reactivity to pan-cadherin antibody in epidermal cells as a marker for metamorphic alteration of Xenopus skin., Izutsu Y, Tochinai S, Onoé K., Dev Growth Differ. August 1, 2000; 42 (4): 377-83.        

Larval antigen molecules recognized by adult immune cells of inbred Xenopus laevis: two pathways for recognition by adult splenic T cells., Izutsu Y, Tochinai S, Iwabuchi K, Onoè K., Dev Biol. May 15, 2000; 221 (2): 365-74.          

Trophic effects of androgen: development and hormonal regulation of neuron number in a sexually dimorphic vocal motor nucleus., Kay JN, Hannigan P, Kelley DB., J Neurobiol. September 5, 1999; 40 (3): 375-85.

The expression pattern of thyroid hormone response genes in the tadpole tail identifies multiple resorption programs., Berry DL, Schwartzman RA, Brown DD., Dev Biol. November 1, 1998; 203 (1): 12-23.                

Nuclear factor I as a potential regulator during postembryonic organ development., Puzianowska-Kuznicka M, Shi YB, Shi YB., J Biol Chem. March 15, 1996; 271 (11): 6273-82.                      

Adult precursor cells in the tail epidermis of Xenopus tadpoles., Kinoshita T, Sasaki F., Histochemistry. July 1, 1994; 101 (6): 391-6.

Thyroid hormone-dependent regulation of the intestinal fatty acid-binding protein gene during amphibian metamorphosis., Shi YB, Shi YB, Hayes WP., Dev Biol. January 1, 1994; 161 (1): 48-58.              

[Ontogeny of the pronephros and mesonephros in the South African clawed frog, Xenopus laevis Daudin, with special reference to the appearance and movement of the renin-immunopositive cells]., Tahara T, Ogawa K, Taniguchi K., Jikken Dobutsu. October 1, 1993; 42 (4): 601-10.

Spatial, temporal, and hormonal regulation of epidermal keratin expression during development of the frog, Xenopus laevis., Nishikawa A, Shimizu-Nishikawa K, Miller L., Dev Biol. May 1, 1992; 151 (1): 145-53.                

The distribution of E-cadherin during Xenopus laevis development., Levi G, Gumbiner B, Thiery JP., Development. January 1, 1991; 111 (1): 159-69.                

Thyroxine-dependent modulations of the expression of the neural cell adhesion molecule N-CAM during Xenopus laevis metamorphosis., Levi G, Broders F, Dunon D, Edelman GM, Thiery JP., Development. April 1, 1990; 108 (4): 681-92.                

The expression of epidermal antigens in Xenopus laevis., Itoh K, Yamashita A, Kubota HY., Development. September 1, 1988; 104 (1): 1-14.                        

Differential expression of the Ca2+-binding protein parvalbumin during myogenesis in Xenopus laevis., Schwartz LM, Kay BK., Dev Biol. August 1, 1988; 128 (2): 441-52.              

The development of retinal ganglion cells in a tetraploid strain of Xenopus laevis: a morphological study utilizing intracellular dye injection., Sakaguchi DS, Murphey RK, Hunt RK, Tompkins R., J Comp Neurol. April 1, 1984; 224 (2): 231-51.

Response to skin grafts exchanged among siblings of larval and adult gynogenetic diploids in Xenopus laevis., Obara N, Kawahara H, Katagiri C., Transplantation. July 1, 1983; 36 (1): 91-5.

Effects of X-rays on the spermaries and ovaries of Xenopus tadpoles., Ahmad M, Billett FS., Acta Anat (Basel). January 1, 1977; 99 (1): 54-7.

Page(s): 1