Results 1 - 50 of 1358 results
The sulfotransferase XB5850668.L is required to apportion embryonic ectodermal domains. , Marchak A., Dev Dyn. August 19, 2023;
Paracrine regulation of neural crest EMT by placodal MMP28. , Gouignard N ., PLoS Biol. August 1, 2023; 21 (8): e3002261.
Ndst1, a heparan sulfate modification enzyme, regulates neuroectodermal patterning by enhancing Wnt signaling in Xenopus. , Yamamoto T ., Dev Growth Differ. April 1, 2023; 65 (3): 153-160.
Characteristic tetraspanin expression patterns mark various tissues during early Xenopus development. , Kuriyama S ., Dev Growth Differ. February 1, 2023; 65 (2): 109-119.
Understanding the Role of ATP Release through Connexins Hemichannels during Neurulation. , Tovar LM., Int J Mol Sci. January 21, 2023; 24 (3):
ADAM11 a novel regulator of Wnt and BMP4 signaling in neural crest and cancer. , Pandey A., Front Cell Dev Biol. January 1, 2023; 11 1271178.
Zmym4 is required for early cranial gene expression and craniofacial cartilage formation. , Jourdeuil K., Front Cell Dev Biol. January 1, 2023; 11 1274788.
Multi-omics approach dissects cis-regulatory mechanisms underlying North Carolina macular dystrophy, a retinal enhanceropathy. , Van de Sompele S., Am J Hum Genet. November 3, 2022; 109 (11): 2029-2048.
Xenopus Dusp6 modulates FGF signaling to precisely pattern pre-placodal ectoderm. , Tsukano K., Dev Biol. August 1, 2022; 488 81-90.
Systematic mapping of rRNA 2'-O methylation during frog development and involvement of the methyltransferase Fibrillarin in eye and craniofacial development in Xenopus laevis. , Delhermite J ., PLoS Genet. January 18, 2022; 18 (1): e1010012.
Temporal and spatial transcriptomic dynamics across brain development in Xenopus laevis tadpoles. , Ta AC ., G3 (Bethesda). January 4, 2022; 12 (1):
The Ribosomal Protein L5 Functions During Xenopus Anterior Development Through Apoptotic Pathways. , Schreiner C., Front Cell Dev Biol. January 1, 2022; 10 777121.
An early midbrain sensorimotor pathway is involved in the timely initiation and direction of swimming in the hatchling Xenopus laevis tadpole. , Larbi MC., Front Neural Circuits. January 1, 2022; 16 1027831.
The dorsal blastopore lip is a source of signals inducing planar cell polarity in the Xenopus neural plate. , Mancini P ., Biol Open. July 15, 2021; 10 (7):
BMP signaling is enhanced intracellularly by FHL3 controlling WNT-dependent spatiotemporal emergence of the neural crest. , Alkobtawi M., Cell Rep. June 22, 2021; 35 (12): 109289.
Kindlin2 regulates neural crest specification via integrin-independent regulation of the FGF signaling pathway. , Wang H., Development. May 15, 2021; 148 (10):
Xenopus leads the way: Frogs as a pioneering model to understand the human brain. , Exner CRT., Genesis. February 1, 2021; 59 (1-2): e23405.
R-spondins are BMP receptor antagonists in Xenopus early embryonic development. , Lee H , Lee H ., Nat Commun. November 4, 2020; 11 (1): 5570.
Dynamic expression of MMP28 during cranial morphogenesis. , Gouignard N ., Philos Trans R Soc Lond B Biol Sci. October 12, 2020; 375 (1809): 20190559.
Amphibian thalamic nuclear organization during larval development and in the adult frog Xenopus laevis: Genoarchitecture and hodological analysis. , Morona R., J Comp Neurol. October 1, 2020; 528 (14): 2361-2403.
Pinhead signaling regulates mesoderm heterogeneity via the FGF receptor-dependent pathway. , Ossipova O., Development. September 11, 2020; 147 (17):
MiR-9 and the Midbrain- Hindbrain Boundary: A Showcase for the Limited Functional Conservation and Regulatory Complexity of MicroRNAs. , Alwin Prem Anand A., Front Cell Dev Biol. July 14, 2020; 8 586158.
Dach1 regulates neural crest migration during embryonic development. , Kim YK., Biochem Biophys Res Commun. July 5, 2020; 527 (4): 896-901.
FERM domain-containing protein 6 identifies a subpopulation of varicose nerve fibers in different vertebrate species. , Beck J., Cell Tissue Res. July 1, 2020; 381 (1): 13-24.
Xenopus embryos show a compensatory response following perturbation of the Notch signaling pathway. , Solini GE., Dev Biol. April 15, 2020; 460 (2): 99-107.
Six1 proteins with human branchio-oto-renal mutations differentially affect cranial gene expression and otic development. , Shah AM., Dis Model Mech. March 3, 2020; 13 (3):
Pinhead signaling regulates mesoderm heterogeneity via FGF receptor-dependent pathway. , Ossipova O., Development. January 1, 2020;
Selectivity of (±)-citalopram at nicotinic acetylcholine receptors and different inhibitory mechanisms between habenular α3β4* and α9α10 subtypes. , Arias HR., Neurochem Int. December 1, 2019; 131 104552.
Bioinformatics Screening of Genes Specific for Well-Regenerating Vertebrates Reveals c-answer, a Regulator of Brain Development and Regeneration. , Korotkova DD., Cell Rep. October 22, 2019; 29 (4): 1027-1040.e6.
Calcium Activity Dynamics Correlate with Neuronal Phenotype at a Single Cell Level and in a Threshold-Dependent Manner. , Paudel S., Int J Mol Sci. April 16, 2019; 20 (8):
Nucleotide receptor P2RY4 is required for head formation via induction and maintenance of head organizer in Xenopus laevis. , Harata A., Dev Growth Differ. February 1, 2019; 61 (2): 186-197.
The neural border: Induction, specification and maturation of the territory that generates neural crest cells. , Pla P., Dev Biol. December 1, 2018; 444 Suppl 1 S36-S46.
Identification of retinal homeobox ( rax) gene-dependent genes by a microarray approach: The DNA endoglycosylase neil3 is a major downstream component of the rax genetic pathway. , Pan Y., Dev Dyn. November 1, 2018; 247 (11): 1199-1210.
Serine Threonine Kinase Receptor-Associated Protein Deficiency Impairs Mouse Embryonic Stem Cells Lineage Commitment Through CYP26A1-Mediated Retinoic Acid Homeostasis. , Jin L., Stem Cells. September 1, 2018; 36 (9): 1368-1379.
The age-regulated zinc finger factor ZNF367 is a new modulator of neuroblast proliferation during embryonic neurogenesis. , Naef V., Sci Rep. August 7, 2018; 8 (1): 11836.
Dkk2 promotes neural crest specification by activating Wnt/ β-catenin signaling in a GSK3β independent manner. , Devotta A., Elife. July 23, 2018; 7
Draft genome of Dugesia japonica provides insights into conserved regulatory elements of the brain restriction gene nou-darake in planarians. , An Y., Zoological Lett. June 13, 2018; 4 24.
Expression of the adhesion G protein-coupled receptor A2 (adgra2) during Xenopus laevis development. , Seigfried FA., Gene Expr Patterns. June 1, 2018; 28 54-61.
C8orf46 homolog encodes a novel protein Vexin that is required for neurogenesis in Xenopus laevis. , Moore KB ., Dev Biol. May 1, 2018; 437 (1): 27-40.
Muscarinic modulation of the Xenopus laevis tadpole spinal mechanosensory pathway. , Porter NJ., Brain Res Bull. May 1, 2018; 139 278-284.
An Early Function of Polycystin-2 for Left- Right Organizer Induction in Xenopus. , Vick P ., iScience. April 27, 2018; 2 76-85.
An atlas of Wnt activity during embryogenesis in Xenopus tropicalis. , Borday C., PLoS One. April 11, 2018; 13 (4): e0193606.
The skeletal ontogeny of Astatotilapia burtoni - a direct-developing model system for the evolution and development of the teleost body plan. , Woltering JM., BMC Dev Biol. April 3, 2018; 18 (1): 8.
A model for investigating developmental eye repair in Xenopus laevis. , Kha CX ., Exp Eye Res. April 1, 2018; 169 38-47.
Phosphorylation states change Otx2 activity for cell proliferation and patterning in the Xenopus embryo. , Satou Y., Development. March 12, 2018; 145 (5):
Intracellular calcium signal at the leading edge regulates mesodermal sheet migration during Xenopus gastrulation. , Hayashi K., Sci Rep. February 5, 2018; 8 (1): 2433.
Gene expression of the two developmentally regulated dermatan sulfate epimerases in the Xenopus embryo. , Gouignard N ., PLoS One. January 18, 2018; 13 (1): e0191751.
Asymmetric development of the nervous system. , Alqadah A., Dev Dyn. January 1, 2018; 247 (1): 124-137.
Identification of Isthmin 1 as a Novel Clefting and Craniofacial Patterning Gene in Humans. , Lansdon LA., Genetics. January 1, 2018; 208 (1): 283-296.
lrpap1 as a specific marker of proximal pronephric kidney tubuli in Xenopus laevis embryos. , Neuhaus H ., Int J Dev Biol. January 1, 2018; 62 (4-5): 319-324.