Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (90) Expression Attributions Wiki
XB-ANAT-125

Papers associated with esophagus

Limit to papers also referencing gene:
Results 1 - 50 of 90 results

Page(s): 1 2 Next

Sort Newest To Oldest Sort Oldest To Newest

The cellular basis of cartilage growth and shape change in larval and metamorphosing Xenopus frogs., Rose CS., PLoS One. January 1, 2023; 18 (1): e0277110.                                  


The homeodomain transcription factor Ventx2 regulates respiratory progenitor cell number and differentiation timing during Xenopus lung development., Rankin SA, Rankin SA., Dev Growth Differ. September 1, 2022; 64 (7): 347-361.            


Identification and validation of candidate risk genes in endocytic vesicular trafficking associated with esophageal atresia and tracheoesophageal fistulas., Zhong G., HGG Adv. July 14, 2022; 3 (3): 100107.        


Nutritional control of thyroid morphogenesis through gastrointestinal hormones., Takagishi M., Curr Biol. April 11, 2022; 32 (7): 1485-1496.e4.                            


Aquaporin (AQP) channels in the spiny dogfish, Squalus acanthias I: Characterization of AQP3 and AQP15 function and expression, and localization of the proteins in gill and spiral valve intestine., Cutler CP., Comp Biochem Physiol B Biochem Mol Biol. January 1, 2022; 258 110702.


Microplastics from miscellaneous plastic wastes: Physico-chemical characterization and impact on fish and amphibian development., Bonfanti P., Ecotoxicol Environ Saf. December 1, 2021; 225 112775.                        


Protocadherin-1 is expressed in the notochord of mouse embryo but is dispensable for its formation., Fukunaga K., Biochem Biophys Rep. June 15, 2021; 27 101047.          


Xenopus epidermal and endodermal epithelia as models for mucociliary epithelial evolution, disease, and metaplasia., Walentek P., Genesis. February 1, 2021; 59 (1-2): e23406.          


Endoparasites infecting exotic captive amphibian pet and zoo animals (Anura, Caudata) in Germany., Hallinger MJ., Parasitol Res. November 1, 2020; 119 (11): 3659-3673.            


Developmentally-programmed cellular senescence is conserved and widespread in zebrafish., Da Silva-Álvarez S., Aging (Albany NY). September 29, 2020; 12 (18): 17895-17901.      


Subcellular Localization of the TFF Peptides xP1 and xP4 in the Xenopus laevis Gastric/Esophageal Mucosa: Different Secretion Modes Reflecting Diverse Protective Functions., Schwarz H., Int J Mol Sci. January 23, 2020; 21 (3):       


Isl1 Regulation of Nkx2.1 in the Early Foregut Epithelium Is Required for Trachea-Esophageal Separation and Lung Lobation., Kim E., Dev Cell. December 16, 2019; 51 (6): 675-683.e4.          


Endosome-Mediated Epithelial Remodeling Downstream of Hedgehog-Gli Is Required for Tracheoesophageal Separation., Nasr T., Dev Cell. December 16, 2019; 51 (6): 665-674.e6.                  


New information on morphology and molecular data of camallanid nematodes parasitising Xenopus laevis (Anura: Pipidae) in South Africa., Svitin R., Folia Parasitol (Praha). March 12, 2018; 65


Timing is everything: Reiterative Wnt, BMP and RA signaling regulate developmental competence during endoderm organogenesis., Rankin SA, Rankin SA., Dev Biol. February 1, 2018; 434 (1): 121-132.          


Digital dissection of the model organism Xenopus laevis using contrast-enhanced computed tomography., Porro LB., J Anat. August 1, 2017; 231 (2): 169-191.                        


ATP4a is required for development and function of the Xenopus mucociliary epidermis - a potential model to study proton pump inhibitor-associated pneumonia., Walentek P., Dev Biol. December 15, 2015; 408 (2): 292-304.                                


ATP4 and ciliation in the neuroectoderm and endoderm of Xenopus embryos and tadpoles., Walentek P., Data Brief. April 20, 2015; 4 22-31.            


A Molecular atlas of Xenopus respiratory system development., Rankin SA, Rankin SA., Dev Dyn. January 1, 2015; 244 (1): 69-85.                    


Sirtuin inhibitor Ex-527 causes neural tube defects, ventral edema formations, and gastrointestinal malformations in Xenopus laevis embryos., Ohata Y., Dev Growth Differ. August 1, 2014; 56 (6): 460-8.          


The Xenopus alcohol dehydrogenase gene family: characterization and comparative analysis incorporating amphibian and reptilian genomes., Borràs E., BMC Genomics. March 20, 2014; 15 216.          


Plasticity of lung development in the amphibian, Xenopus laevis., Rose CS., Biol Open. December 15, 2013; 2 (12): 1324-35.      


Retinoic acid-activated Ndrg1a represses Wnt/β-catenin signaling to allow Xenopus pancreas, oesophagus, stomach, and duodenum specification., Zhang T., PLoS One. May 15, 2013; 8 (5): e65058.                  


Lin28 proteins are required for germ layer specification in Xenopus., Faas L., Development. March 1, 2013; 140 (5): 976-86.                      


Multiple functions of FADD in apoptosis, NF-κB-related signaling, and heart development in Xenopus embryos., Sakamaki K., Genes Cells. November 1, 2012; 17 (11): 875-96.                                  


Suppression of Bmp4 signaling by the zinc-finger repressors Osr1 and Osr2 is required for Wnt/β-catenin-mediated lung specification in Xenopus., Rankin SA, Rankin SA., Development. August 1, 2012; 139 (16): 3010-20.                                                                                


Maturation of the gastric microvasculature in Xenopus laevis (Lissamphibia, Anura) occurs at the transition from the herbivorous to the carnivorous lifestyle, predominantly by intussuceptive microvascular growth (IMG): a scanning electron microscope study of microvascular corrosion casts and correlative light microscopy., Lametschwandtner A., Anat Sci Int. June 1, 2012; 87 (2): 88-100.                    


Mortality and morbidity in African clawed frogs (Xenopus laevis) associated with construction noise and vibrations., Felt SA., J Am Assoc Lab Anim Sci. March 1, 2012; 51 (2): 253-6.


Aquaporin 4 is a Ubiquitously Expressed Isoform in the Dogfish (Squalus acanthias) Shark., Cutler CP., Front Physiol. January 10, 2012; 2 107.                  


Xenopus as a model system for the study of GOLPH2/GP73 function: Xenopus GOLPH2 is required for pronephros development., Li L., PLoS One. January 1, 2012; 7 (6): e38939.                                              


A new type of lectin discovered in a fish, flathead (Platycephalus indicus), suggests an alternative functional role for mammalian plasma kallikrein., Tsutsui S., Glycobiology. December 1, 2011; 21 (12): 1580-7.            


Expression patterns of genes encoding small GTPases Ras-dva-1 and Ras-dva-2 in the Xenopus laevis tadpoles., Tereshina MB., Gene Expr Patterns. January 1, 2011; 11 (1-2): 156-61.      


Expression of components of Wnt and Hedgehog pathways in different tissue layers during lung development in Xenopus laevis., Yin A., Gene Expr Patterns. January 1, 2010; 10 (7-8): 338-44.        


Formation of the murine endoderm: lessons from the mouse, frog, fish, and chick., Tremblay KD., Prog Mol Biol Transl Sci. January 1, 2010; 96 1-34.


Enteric co-innervation of esophageal striated muscle fibers: a phylogenetic study., Hempfling C., Auton Neurosci. December 3, 2009; 151 (2): 135-41.


Expression and functional characterization of four aquaporin water channels from the European eel (Anguilla anguilla)., MacIver B., J Exp Biol. September 1, 2009; 212 (17): 2856-63.


XsFRP5 modulates endodermal organogenesis in Xenopus laevis., Damianitsch K., Dev Biol. May 15, 2009; 329 (2): 327-37.      


Developmental expression of retinoic acid receptors (RARs)., Dollé P., Nucl Recept Signal. May 12, 2009; 7 e006.            


Comparative expression analysis of the neurogenins in Xenopus tropicalis and Xenopus laevis., Nieber F., Dev Dyn. February 1, 2009; 238 (2): 451-8.        


Epithelial Na+ channel delta subunit is an acid sensor in the human oesophagus., Yamamura H., Eur J Pharmacol. December 14, 2008; 600 (1-3): 32-6.


Ectopic germline cells in embryos of Xenopus laevis., Ikenishi K., Dev Growth Differ. September 1, 2007; 49 (7): 561-70.      


Xenopus cDNA microarray identification of genes with endodermal organ expression., Park EC., Dev Dyn. June 1, 2007; 236 (6): 1633-49.                    


Cloning and developmental expression of the Xenopus Nkx6 genes., Zhao S., Dev Genes Evol. June 1, 2007; 217 (6): 477-83.  


Mechanical activity of frog esophagus muscle in response to electrical stimulation of intramural nerves., Yoshida M., J Smooth Muscle Res. April 1, 2007; 43 (2): 73-84.


Characterization of the agr2 gene, a homologue of X. laevis anterior gradient 2, from the zebrafish, Danio rerio., Shih LJ., Gene Expr Patterns. February 1, 2007; 7 (4): 452-60.                


Spatial and temporal expression of the Grainyhead-like transcription factor family during murine development., Auden A., Gene Expr Patterns. October 1, 2006; 6 (8): 964-70.          


Role for retinoid signaling in left-right asymmetric digestive organ morphogenesis., Lipscomb K., Dev Dyn. August 1, 2006; 235 (8): 2266-75.    


Developmental expression of FoxJ1.2, FoxJ2, and FoxQ1 in Xenopus tropicalis., Choi VM., Gene Expr Patterns. June 1, 2006; 6 (5): 443-7.      


Expression profile of the RNA-binding protein gene hermes during chicken embryonic development., Wilmore HP., Dev Dyn. July 1, 2005; 233 (3): 1045-51.          


Remodeling of the intestine during metamorphosis of Xenopus laevis., Schreiber AM., Proc Natl Acad Sci U S A. March 8, 2005; 102 (10): 3720-5.              

Page(s): 1 2 Next