Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (2432) Expression Attributions Wiki
XB-ANAT-63

Papers associated with heart (and mapt)

Limit to papers also referencing gene:
Show all heart papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

A convergent molecular network underlying autism and congenital heart disease., Rosenthal SB., Cell Syst. November 17, 2021; 12 (11): 1094-1107.e6.            


Large, long range tensile forces drive convergence during Xenopus blastopore closure and body axis elongation., Shook DR., Elife. March 13, 2018; 7                           


Molecular Cloning and Functional Expression of the Equine K+ Channel KV11.1 (Ether à Go-Go-Related/KCNH2 Gene) and the Regulatory Subunit KCNE2 from Equine Myocardium., Pedersen PJ., PLoS One. September 4, 2015; 10 (9): e0138320.                  


Domain-domain interactions determine the gating, permeation, pharmacology, and subunit modulation of the IKs ion channel., Zaydman MA., Elife. March 12, 2014; 3 e03606.                        


Comparative expression analysis of cysteine-rich intestinal protein family members crip1, 2 and 3 during Xenopus laevis embryogenesis., Hempel A., Int J Dev Biol. January 1, 2014; 58 (10-12): 841-9.                                              


MID1 and MID2 are required for Xenopus neural tube closure through the regulation of microtubule organization., Suzuki M., Development. July 1, 2010; 137 (14): 2329-39.                                                      


Development of a sensitive non-radioactive protein kinase assay and its application for detecting DYRK activity in Xenopus laevis oocytes., Lilienthal E., BMC Biochem. May 20, 2010; 11 20.        


Expression and functional characterization of the human ether-à-go-go-related gene (HERG) K+ channel cardiac splice variant in Xenopus laevis oocytes., Aydar E., J Membr Biol. January 1, 2006; 211 (2): 115-26.


Hysteresis in the voltage dependence of HCN channels: conversion between two modes affects pacemaker properties., Männikkö R., J Gen Physiol. March 1, 2005; 125 (3): 305-26.                                          


Fluorescent labeling of endothelial cells allows in vivo, continuous characterization of the vascular development of Xenopus laevis., Levine AJ., Dev Biol. February 1, 2003; 254 (1): 50-67.                      


Sodium channel isoform-specific effects of halothane: protein kinase C co-expression and slow inactivation gating., Patel MK., Br J Pharmacol. August 1, 2000; 130 (8): 1785-92.


Mechanism for the effects of extracellular acidification on HERG-channel function., Jiang M., Am J Physiol. October 1, 1999; 277 (4): H1283-92.


Electrophysiological characterization of an alternatively processed ERG K+ channel in mouse and human hearts., Lees-Miller JP., Circ Res. November 1, 1997; 81 (5): 719-26.


Sequence and expression analysis of a Xenopus laevis cDNA which encodes a homologue of mammalian 14-3-3 zeta protein., Kousteni S., Gene. May 6, 1997; 190 (2): 279-85.        


A novel K+ channel beta-subunit (hKv beta 1.3) is produced via alternative mRNA splicing., England SK., J Biol Chem. December 1, 1995; 270 (48): 28531-4.


Characterization of a voltage-gated K+ channel beta subunit expressed in human heart., England SK., Proc Natl Acad Sci U S A. July 3, 1995; 92 (14): 6309-13.


Voltage-dependent inactivation in a cardiac-skeletal chimeric calcium channel., Parent L., FEBS Lett. February 27, 1995; 360 (2): 144-50.


Molecular cloning and functional expression of mouse connexin40, a second gap junction gene preferentially expressed in lung., Hennemann H., J Cell Biol. June 1, 1992; 117 (6): 1299-310.

???pagination.result.page??? 1