Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (477) Expression Attributions Wiki
XB-ANAT-3353

Papers associated with glial cell

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Ultrastructure and GABA immunoreactivity in layers 8 and 9 of the optic tectum of Xenopus laevis., Rybicka KK., Eur J Neurosci. October 1, 1994; 6 (10): 1567-82.                    


Cloning and expression of a novel human brain inward rectifier potassium channel., Makhina EN., J Biol Chem. August 12, 1994; 269 (32): 20468-74.


Mode of action of psoralens, benzofurans, acridinons, and coumarins on the ionic currents in intact myelinated nerve fibres and its significance in demyelinating diseases., Bohuslavizki KH., Gen Physiol Biophys. August 1, 1994; 13 (4): 309-28.


Expression of neurotransmitter receptors and Ca2+ channels in the adult fornix and optic nerve., Matute C., Neuroreport. July 21, 1994; 5 (12): 1457-60.


Glia of the cholinergic electromotor nucleus of Torpedo are the source of the cDNA encoding a GAT-1-like GABA transporter., Swanson GT., J Neurochem. July 1, 1994; 63 (1): 1-12.


Developmental timers. How do embryonic cells measure time?, Ffrench-Constant C., Curr Biol. May 1, 1994; 4 (5): 415-9.


Properties of angiotensin II receptors in glial cells from the adult corpus callosum., Matute C., Proc Natl Acad Sci U S A. April 26, 1994; 91 (9): 3774-8.


A 28 kDa sarcolemmal antigen in kidney principal cell basolateral membranes: relationship to orthogonal arrays and MIP26., Verbavatz JM., J Cell Sci. April 1, 1994; 107 ( Pt 4) 1083-94.


A monoclonal antibody (IN-1) which neutralizes neurite growth inhibitory proteins in the rat CNS recognizes antigens localized in CNS myelin., Rubin BP., J Neurocytol. April 1, 1994; 23 (4): 209-17.


Primary sensory neurons express a Shaker-like potassium channel gene., Ribera AB., J Neurosci. November 1, 1993; 13 (11): 4988-96.                


Imaging F-actin in fixed glial cells with a combined optical fluorescence/atomic force microscope., Henderson E., Neuroimage. September 1, 1993; 1 (2): 145-50.


Requirements for nuclear translocation and nucleolar accumulation of nucleolin of Xenopus laevis., Messmer B., Eur J Cell Biol. August 1, 1993; 61 (2): 369-82.


Gap junctions in the brain: where, what type, how many and why?, Dermietzel R., Trends Neurosci. May 1, 1993; 16 (5): 186-92.


Neurotransmitter receptors and voltage-dependent Ca2+ channels encoded by mRNA from the adult corpus callosum., Matute C., Proc Natl Acad Sci U S A. April 15, 1993; 90 (8): 3270-4.


A role of tyrosine phosphorylation in the formation of acetylcholine receptor clusters induced by electric fields in cultured Xenopus muscle cells., Peng HB., J Cell Biol. January 1, 1993; 120 (1): 197-204.


Primary structure and functional characterization of a high-affinity glutamate transporter., Kanai Y., Nature. December 3, 1992; 360 (6403): 467-71.


Organization and expression of the gene encoding chick kainate binding protein, a member of the glutamate receptor family., Gregor P., Brain Res Mol Brain Res. December 1, 1992; 16 (3-4): 179-86.


Structure, expression, and functional analysis of a Na(+)-dependent glutamate/aspartate transporter from rat brain., Storck T., Proc Natl Acad Sci U S A. November 15, 1992; 89 (22): 10955-9.


The adhesion molecule on glia (AMOG/beta 2) and alpha 1 subunits assemble to functional sodium pumps in Xenopus oocytes., Schmalzing G., J Biol Chem. October 5, 1992; 267 (28): 20212-6.


Actin filament dynamics in living glial cells imaged by atomic force microscopy., Henderson E., Science. September 25, 1992; 257 (5078): 1944-6.


L-glutamate transporter derived from mRNAs of primary glial cultures: expression in Xenopus laevis oocytes., Alcántara R., Brain Res Mol Brain Res. September 1, 1992; 15 (1-2): 167-70.


Identification and developmental expression of a novel low molecular weight neuronal intermediate filament protein expressed in Xenopus laevis., Charnas LR., J Neurosci. August 1, 1992; 12 (8): 3010-24.                      


[Regeneration of the optic nerve of Xenopus laevis after argon laser injury], Achard O., Klin Monbl Augenheilkd. May 1, 1992; 200 (5): 486-8.


Light-sensitive melatonin synthesis by Xenopus photoreceptors after destruction of the inner retina., Cahill GM., Vis Neurosci. May 1, 1992; 8 (5): 487-90.


Müller (glial) cells in the retina of urodeles and anurans reveal different morphology by means of freeze-fracturing., Wolburg H., Neurosci Lett. April 13, 1992; 138 (1): 89-92.


Molecular cloning and development analysis of a new glutamate receptor subunit isoform in cerebellum., Gallo V., J Neurosci. March 1, 1992; 12 (3): 1010-23.


Regeneration in the Xenopus tadpole optic nerve is preceded by a massive macrophage/microglial response., Wilson MA., Anat Embryol (Berl). January 1, 1992; 186 (1): 75-89.


Spinal cord and ganglia regeneration in larval Xenopus laevis following unilateral ablation., Bernardini S., J Hirnforsch. January 1, 1992; 33 (3): 241-8.


Xenopus temporal retinal neurites collapse on contact with glial cells from caudal tectum in vitro., Johnston AR., Development. October 1, 1991; 113 (2): 409-17.            


Carnosine in the brain and olfactory system of amphibia and reptilia: a comparative study using immunocytochemical and biochemical methods., Artero C., Neurosci Lett. September 16, 1991; 130 (2): 182-6.


Neuroanatomical and functional analysis of neural tube formation in notochordless Xenopus embryos; laterality of the ventral spinal cord is lost., Clarke JD., Development. June 1, 1991; 112 (2): 499-516.                        


Development of the olfactory nerve in the African clawed frog, Xenopus laevis: I. Normal development., Burd GD., J Comp Neurol. February 1, 1991; 304 (1): 123-34.


Retinal axons in Xenopus show different behaviour patterns on various glial substrates in vitro., Jack J., Anat Embryol (Berl). January 1, 1991; 183 (2): 193-203.


Microglia in tadpoles of Xenopus laevis: normal distribution and the response to optic nerve injury., Goodbrand IA., Anat Embryol (Berl). January 1, 1991; 184 (1): 71-82.


A computational test of the requirements for conduction in demyelinated axons., Hines M., Restor Neurol Neurosci. January 1, 1991; 3 (2): 81-93.


Identification of vimentin and novel vimentin-related proteins in Xenopus oocytes and early embryos., Torpey NP., Development. December 1, 1990; 110 (4): 1185-95.            


Heterogeneity in spinal radial glia demonstrated by intermediate filament expression and HRP labelling., Holder N., J Neurocytol. December 1, 1990; 19 (6): 915-28.


Characterization and developmental expression of Xenopus proliferating cell nuclear antigen (PCNA)., Leibovici M., Dev Biol. September 1, 1990; 141 (1): 183-92.          


Retinal axons in Xenopus laevis recognise differences between tectal and diencephalic glial cells in vitro., Gooday DJ., Cell Tissue Res. March 1, 1990; 259 (3): 595-8.


Molecular approach to dorsoanterior development in Xenopus laevis., Sato SM., Dev Biol. January 1, 1990; 137 (1): 135-41.          


Purification and characterization of a protease from Xenopus embryos., Miyata S., Eur J Biochem. December 8, 1989; 186 (1-2): 49-54.


Cell lineage analysis reveals multipotent precursors in the ciliary margin of the frog retina., Wetts R., Dev Biol. November 1, 1989; 136 (1): 254-63.


The appearance of neural and glial cell markers during early development of the nervous system in the amphibian embryo., Messenger NJ., Development. September 1, 1989; 107 (1): 43-54.                      


An epithelium-type cytoskeleton in a glial cell: astrocytes of amphibian optic nerves contain cytokeratin filaments and are connected by desmosomes., Rungger-Brändle E., J Cell Biol. August 1, 1989; 109 (2): 705-16.              


Growth cone interactions with a glial cell line from embryonic Xenopus retina., Sakaguchi DS., Dev Biol. July 1, 1989; 134 (1): 158-74.                    


Excitatory amino acids: the involvement of second messengers in the signal transduction process., Smart TG., Cell Mol Neurobiol. June 1, 1989; 9 (2): 193-206.


Cytokeratin filaments and desmosomes in the epithelioid cells of the perineurial and arachnoidal sheaths of some vertebrate species., Achtstätter T., Differentiation. May 1, 1989; 40 (2): 129-49.                        


A whole-mount immunocytochemical analysis of the expression of the intermediate filament protein vimentin in Xenopus., Dent JA., Development. January 1, 1989; 105 (1): 61-74.                      


Immunocytochemical identification of non-neuronal intermediate filament proteins in the developing Xenopus laevis nervous system., Szaro BG., Dev Biol. October 1, 1988; 471 (2): 207-24.                    


Synthesis and localization of plasma proteins in the developing human brain. Integrity of the fetal blood-brain barrier to endogenous proteins of hepatic origin., Møllgård K., Dev Biol. July 1, 1988; 128 (1): 207-21.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 ???pagination.result.next???