Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (1596) Expression Attributions Wiki
XB-ANAT-13

Papers associated with telencephalon (and nos1)

Limit to papers also referencing gene:
Show all telencephalon papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Gene expression analysis of developing cell groups in the pretectal region of Xenopus laevis., Morona R., J Comp Neurol. March 1, 2017; 525 (4): 715-752.                                            


Characterization of the insulin-like growth factor binding protein family in Xenopus tropicalis., Haramoto Y., Int J Dev Biol. January 1, 2014; 58 (9): 705-11.                                            


Pattern of calbindin-D28k and calretinin immunoreactivity in the brain of Xenopus laevis during embryonic and larval development., Morona R., J Comp Neurol. January 1, 2013; 521 (1): 79-108.                  


High cell-autonomy of the anterior endomesoderm viewed in blastomere fate shift during regulative development in the isolated right halves of four-cell stage Xenopus embryos., Koga M., Dev Growth Differ. September 1, 2012; 54 (7): 717-29.              


Evidences for tangential migrations in Xenopus telencephalon: developmental patterns and cell tracking experiments., Moreno N., Dev Neurobiol. March 1, 2008; 68 (4): 504-20.                  


Leptin (ob gene) of the South African clawed frog Xenopus laevis., Crespi EJ., Proc Natl Acad Sci U S A. June 27, 2006; 103 (26): 10092-7.            


Localization and connectivity of the lateral amygdala in anuran amphibians., Moreno N., J Comp Neurol. November 8, 2004; 479 (2): 130-48.                  


Ontogeny of NADPH diaphorase/nitric oxide synthase reactivity in the brain of Xenopus laevis., López JM., J Comp Neurol. March 25, 2002; 445 (1): 59-77.


Nitric oxide is an essential negative regulator of cell proliferation in Xenopus brain., Peunova N., J Neurosci. November 15, 2001; 21 (22): 8809-18.              


The small muscle-specific protein Csl modifies cell shape and promotes myocyte fusion in an insulin-like growth factor 1-dependent manner., Palmer S., J Cell Biol. May 28, 2001; 153 (5): 985-98.                    


Probing spindle assembly mechanisms with monastrol, a small molecule inhibitor of the mitotic kinesin, Eg5., Kapoor TM., J Cell Biol. September 4, 2000; 150 (5): 975-88.                    


Mycobacterium tuberculosis expresses a novel pH-dependent divalent cation transporter belonging to the Nramp family., Agranoff D., J Exp Med. September 6, 1999; 190 (5): 717-24.          


Topographical relationship between neuronal nitric oxide synthase immunoreactivity and cyclic 3',5'-guanosine monophosphate accumulation in the brain of the adult Xenopus laevis., Allaerts W., J Chem Neuroanat. July 1, 1998; 15 (1): 41-56.


Nitric oxide synthase and background adaptation in Xenopus laevis., Allaerts W., J Chem Neuroanat. December 1, 1997; 14 (1): 21-31.


Localization of nitric oxide synthase in the brain of the frog, Xenopus laevis., Brüning G., Dev Biol. November 25, 1996; 741 (1-2): 331-43.                


Nitric oxide synthase in the brain of a urodele amphibian (Pleurodeles waltl) and its relation to catecholaminergic neuronal structures., González A., Dev Biol. July 15, 1996; 727 (1-2): 49-64.


Central projections of the nervus terminalis and the nervus praeopticus in the lungfish brain revealed by nitric oxide synthase., Schober A., J Comp Neurol. November 1, 1994; 349 (1): 1-19.

???pagination.result.page??? 1