Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (1341) Expression Attributions Wiki
XB-ANAT-127

Papers associated with intestine (and sox17b.1)

Limit to papers also referencing gene:
Show all intestine papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Sox17 and β-catenin co-occupy Wnt-responsive enhancers to govern the endoderm gene regulatory network., Mukherjee S., Elife. September 7, 2020; 9                           


Liver Specification in the Absence of Cardiac Differentiation Revealed by Differential Sensitivity to Wnt/β Catenin Pathway Activation., Haworth K., Front Physiol. January 1, 2019; 10 155.              


The Sox transcriptional factors: Functions during intestinal development in vertebrates., Fu L., Semin Cell Dev Biol. March 1, 2017; 63 58-67.        


Sirtuin inhibitor Ex-527 causes neural tube defects, ventral edema formations, and gastrointestinal malformations in Xenopus laevis embryos., Ohata Y., Dev Growth Differ. August 1, 2014; 56 (6): 460-8.          


Sox17 and Sox4 differentially regulate beta-catenin/T-cell factor activity and proliferation of colon carcinoma cells., Sinner D., Mol Cell Biol. November 1, 2007; 27 (22): 7802-15.                


Amphibian in vitro heart induction: a simple and reliable model for the study of vertebrate cardiac development., Ariizumi T., Int J Dev Biol. September 1, 2003; 47 (6): 405-10.      


Redundant early and overlapping larval roles of Xsox17 subgroup genes in Xenopus endoderm development., Clements D., Mech Dev. March 1, 2003; 120 (3): 337-48.            


Molecular cloning and characterization of human SOX17., Katoh M., Int J Mol Med. February 1, 2002; 9 (2): 153-7.


Changes in embryonic cell fate produced by expression of an endodermal transcription factor, Xsox17., Clements D., Mech Dev. December 1, 2000; 99 (1-2): 65-70.        


Action of the Caenorhabditis elegans GATA factor END-1 in Xenopus suggests that similar mechanisms initiate endoderm development in ecdysozoa and vertebrates., Shoichet SA., Proc Natl Acad Sci U S A. April 11, 2000; 97 (8): 4076-81.          

???pagination.result.page??? 1