Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (160) Expression Attributions Wiki
XB-ANAT-57

Papers associated with presomitic mesoderm (and tbxt)

Limit to papers also referencing gene:
Show all presomitic mesoderm papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Mechanical Tensions Regulate Gene Expression in the Xenopus laevis Axial Tissues., Eroshkin FM., Int J Mol Sci. January 10, 2024; 25 (2):         


Xenopus pitx3 target genes lhx1 and xnr5 are identified using a novel three-fluor flow cytometry-based analysis of promoter activation and repression., Hooker LN., Dev Dyn. September 1, 2017; 246 (9): 657-669.                    


Spemann organizer transcriptome induction by early beta-catenin, Wnt, Nodal, and Siamois signals in Xenopus laevis., Ding Y., Proc Natl Acad Sci U S A. April 11, 2017; 114 (15): E3081-E3090.                        


On the origin of vertebrate somites., Onai T., Zoological Lett. June 15, 2015; 1 33.              


The alternative splicing regulator Tra2b is required for somitogenesis and regulates splicing of an inhibitory Wnt11b isoform., Dichmann DS., Cell Rep. February 3, 2015; 10 (4): 527-36.                    


An essential role for LPA signalling in telencephalon development., Geach TJ., Development. February 1, 2014; 141 (4): 940-9.                            


In vivo T-box transcription factor profiling reveals joint regulation of embryonic neuromesodermal bipotency., Gentsch GE., Cell Rep. September 26, 2013; 4 (6): 1185-96.                              


Comparative Functional Analysis of ZFP36 Genes during Xenopus Development., Tréguer K., PLoS One. January 1, 2013; 8 (1): e54550.                          


Variation in the schedules of somite and neural development in frogs., Sáenz-Ponce N., Proc Natl Acad Sci U S A. December 11, 2012; 109 (50): 20503-7.    


The RNA-binding protein XSeb4R regulates maternal Sox3 at the posttranscriptional level during maternal-zygotic transition in Xenopus., Bentaya S., Dev Biol. March 15, 2012; 363 (2): 362-72.                      


Comparative expression analysis of the H3K27 demethylases, JMJD3 and UTX, with the H3K27 methylase, EZH2, in Xenopus., Kawaguchi A., Int J Dev Biol. January 1, 2012; 56 (4): 295-300.                                          


Mef2d acts upstream of muscle identity genes and couples lateral myogenesis to dermomyotome formation in Xenopus laevis., Della Gaspera B., PLoS One. January 1, 2012; 7 (12): e52359.                  


EBF proteins participate in transcriptional regulation of Xenopus muscle development., Green YS., Dev Biol. October 1, 2011; 358 (1): 240-50.                    


Downstream of FGF during mesoderm formation in Xenopus: the roles of Elk-1 and Egr-1., Nentwich O., Dev Biol. December 15, 2009; 336 (2): 313-26.          


Normal levels of p27 are necessary for somite segmentation and determining pronephric organ size., Naylor RW., Organogenesis. October 1, 2009; 5 (4): 201-10.                                          


Expression of RhoB in the developing Xenopus laevis embryo., Vignal E., Gene Expr Patterns. January 1, 2007; 7 (3): 282-8.                          


Myoskeletin, a factor related to Myocardin, is expressed in somites and required for hypaxial muscle formation in Xenopus., Zhao H., Int J Dev Biol. January 1, 2007; 51 (4): 315-20.              


Differential expression of two TEF-1 (TEAD) genes during Xenopus laevis development and in response to inducing factors., Naye F., Int J Dev Biol. January 1, 2007; 51 (8): 745-52.                  


Shisa2 promotes the maturation of somitic precursors and transition to the segmental fate in Xenopus embryos., Nagano T., Development. December 1, 2006; 133 (23): 4643-54.                  


Smurf1 regulates neural patterning and folding in Xenopus embryos by antagonizing the BMP/Smad1 pathway., Alexandrova EM., Dev Biol. November 15, 2006; 299 (2): 398-410.                      


ADMP2 is essential for primitive blood and heart development in Xenopus., Kumano G., Dev Biol. November 15, 2006; 299 (2): 411-23.                


XHas2 activity is required during somitogenesis and precursor cell migration in Xenopus development., Ori M., Development. February 1, 2006; 133 (4): 631-40.                        


Identification of novel genes affecting mesoderm formation and morphogenesis through an enhanced large scale functional screen in Xenopus., Chen JA., Mech Dev. March 1, 2005; 122 (3): 307-31.                                                                                                                      


The ARID domain protein dril1 is necessary for TGF(beta) signaling in Xenopus embryos., Callery EM., Dev Biol. February 15, 2005; 278 (2): 542-59.                              


Differential gene expression between the embryonic tail bud and regenerating larval tail in Xenopus laevis., Sugiura T., Dev Growth Differ. February 1, 2004; 46 (1): 97-105.        


Molecular pathways needed for regeneration of spinal cord and muscle in a vertebrate., Beck CW., Dev Cell. September 1, 2003; 5 (3): 429-39.            


Notch activates sonic hedgehog and both are involved in the specification of dorsal midline cell-fates in Xenopus., López SL., Development. May 1, 2003; 130 (10): 2225-38.        


Cloning and characterization of the T-box gene Tbx6 in Xenopus laevis., Uchiyama H., Dev Growth Differ. December 1, 2001; 43 (6): 657-69.            


Gene expression screening in Xenopus identifies molecular pathways, predicts gene function and provides a global view of embryonic patterning., Gawantka V., Mech Dev. October 1, 1998; 77 (2): 95-141.                                                            

???pagination.result.page??? 1