Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (339) Expression Attributions Wiki
XB-ANAT-295

Papers associated with animal

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Oriented cell divisions asymmetrically segregate aPKC and generate cell fate diversity in the early Xenopus embryo., Chalmers AD., Development. June 1, 2003; 130 (12): 2657-68.    


VegT induces endoderm by a self-limiting mechanism and by changing the competence of cells to respond to TGF-beta signals., Clements D., Dev Biol. June 15, 2003; 258 (2): 454-63.  


PKC delta is essential for Dishevelled function in a noncanonical Wnt pathway that regulates Xenopus convergent extension movements., Kinoshita N., Genes Dev. July 1, 2003; 17 (13): 1663-76.                    


Complementary expression of AP-2 and AP-2rep in ectodermal derivatives of Xenopus embryos., Gotoh M., Dev Genes Evol. July 1, 2003; 213 (7): 363-7.


A novel TBP-interacting zinc finger protein functions in early development of Xenopus laevis., Kim M., Biochem Biophys Res Commun. July 11, 2003; 306 (4): 1106-11.


XMam1, the Xenopus homologue of mastermind, is essential to primary neurogenesis in Xenopus laevis embryos., Katada T., Int J Dev Biol. September 1, 2003; 47 (6): 397-404.                      


XMAP215, XKCM1, NuMA, and cytoplasmic dynein are required for the assembly and organization of the transient microtubule array during the maturation of Xenopus oocytes., Becker BE., Dev Biol. September 15, 2003; 261 (2): 488-505.                


Glypican 4 modulates FGF signalling and regulates dorsoventral forebrain patterning in Xenopus embryos., Galli A., Development. October 1, 2003; 130 (20): 4919-29.              


Regulation of apoptosis in theXenopus embryo by Bix3., Trindade M., Development. October 1, 2003; 130 (19): 4611-22.                  


Xenopus autosomal recessive hypercholesterolemia protein couples lipoprotein receptors with the AP-2 complex in oocytes and embryos and is required for vitellogenesis., Zhou Y., J Biol Chem. November 7, 2003; 278 (45): 44584-92.                


Control of embryonic Xenopus morphogenesis by a Ral-GDS/Xral branch of the Ras signalling pathway., Lebreton S., J Cell Sci. November 15, 2003; 116 (Pt 22): 4651-62.          


The beta-catenin/VegT-regulated early zygotic gene Xnr5 is a direct target of SOX3 regulation., Zhang C., Development. December 1, 2003; 130 (23): 5609-24.  


Morphogenesis during Xenopus gastrulation requires Wee1-mediated inhibition of cell proliferation., Murakami MS., Development. February 1, 2004; 131 (3): 571-80.      


Xvelo1 uses a novel 75-nucleotide signal sequence that drives vegetal localization along the late pathway in Xenopus oocytes., Claussen M., Dev Biol. February 15, 2004; 266 (2): 270-84.      


Cloning and developmental expression of MARK/Par-1/MELK-related protein kinase xMAK-V in Xenopus laevis., Ruzov AS., Dev Genes Evol. March 1, 2004; 214 (3): 139-43.


Vertebrate development requires ARVCF and p120 catenins and their interplay with RhoA and Rac., Fang X., J Cell Biol. April 1, 2004; 165 (1): 87-98.                  


The Meis3 protein and retinoid signaling interact to pattern the Xenopus hindbrain., Dibner C., Dev Biol. July 1, 2004; 271 (1): 75-86.              


p120 catenin is required for morphogenetic movements involved in the formation of the eyes and the craniofacial skeleton in Xenopus., Ciesiolka M., J Cell Sci. August 15, 2004; 117 (Pt 18): 4325-39.                      


Polarized distribution of mRNAs encoding a putative LDL receptor adaptor protein, xARH (autosomal recessive hypercholesterolemia) in Xenopus oocytes., Zhou Y., Mech Dev. October 1, 2004; 121 (10): 1249-58.      


Xenopus flotillin1, a novel gene highly expressed in the dorsal nervous system., Pandur PD., Dev Dyn. December 1, 2004; 231 (4): 881-7.  


RLIP mediates downstream signalling from RalB to the actin cytoskeleton during Xenopus early development., Lebreton S., Mech Dev. December 1, 2004; 121 (12): 1481-94.              


The homeodomain-containing transcription factor X-nkx-5.1 inhibits expression of the homeobox gene Xanf-1 during the Xenopus laevis forebrain development., Bayramov AV., Mech Dev. December 1, 2004; 121 (12): 1425-41.  


Exploration of the extracellular space by a large-scale secretion screen in the early Xenopus embryo., Pera EM., Int J Dev Biol. January 1, 2005; 49 (7): 781-96.                                  


The Fox gene family in Xenopus laevis:FoxI2, FoxM1 and FoxP1 in early development., Pohl BS., Int J Dev Biol. January 1, 2005; 49 (1): 53-8.                          


Nuclear localization is required for Dishevelled function in Wnt/beta-catenin signaling., Itoh K., J Biol. January 1, 2005; 4 (1): 3.                  


Xenopus p21-activated kinase 5 regulates blastomeres' adhesive properties during convergent extension movements., Faure S., Dev Biol. January 15, 2005; 277 (2): 472-92.    


Xenopus tropicalis peroxidasin gene is expressed within the developing neural tube and pronephric kidney., Tindall AJ., Dev Dyn. February 1, 2005; 232 (2): 377-84.  


SOX7 is an immediate-early target of VegT and regulates Nodal-related gene expression in Xenopus., Zhang C., Dev Biol. February 15, 2005; 278 (2): 526-41.    


Germ-layer specification and control of cell growth by Ectodermin, a Smad4 ubiquitin ligase., Dupont S., Cell. April 8, 2005; 121 (1): 87-99.                                  


Aggregation of maternal pigment granules is induced by the cytosolic discoidin domain of the Xenopus Del1 protein., Tsabar N., Dev Dyn. May 1, 2005; 233 (1): 224-32.  


Identification and expression of XRTN2 and XRTN3 during Xenopus development., Park EC., Dev Dyn. May 1, 2005; 233 (1): 240-7.  


A consensus Oct1 binding site is required for the activity of the Xenopus Cdx4 promoter., Reece-Hoyes JS., Dev Biol. June 15, 2005; 282 (2): 509-23.              


"Optical patch-clamping": single-channel recording by imaging Ca2+ flux through individual muscle acetylcholine receptor channels., Demuro A., J Gen Physiol. September 1, 2005; 126 (3): 179-92.                    


Neptune is involved in posterior axis and tail formation in Xenopus embryogenesis., Takeda M., Dev Dyn. September 1, 2005; 234 (1): 63-73.  


The novel Smad-interacting protein Smicl regulates Chordin expression in the Xenopus embryo., Collart C., Development. October 1, 2005; 132 (20): 4575-86.        


A cell cycle arrest is necessary for bottle cell formation in the early Xenopus gastrula: integrating cell shape change, local mitotic control and mesodermal patterning., Kurth T., Mech Dev. December 1, 2005; 122 (12): 1251-65.                  


An amphioxus LIM-homeobox gene, AmphiLim1/5, expressed early in the invaginating organizer region and later in differentiating cells of the kidney and central nervous system., Langeland JA., Int J Biol Sci. January 1, 2006; 2 (3): 110-6.      


Tcf- and Vent-binding sites regulate neural-specific geminin expression in the gastrula embryo., Taylor JJ., Dev Biol. January 15, 2006; 289 (2): 494-506.                


Cooperative non-cell and cell autonomous regulation of Nodal gene expression and signaling by Lefty/Antivin and Brachyury in Xenopus., Cha YR., Dev Biol. February 15, 2006; 290 (2): 246-64.                        


Conserved roles for Oct4 homologues in maintaining multipotency during early vertebrate development., Morrison GM., Development. May 1, 2006; 133 (10): 2011-22.                


FGF8 spliceforms mediate early mesoderm and posterior neural tissue formation in Xenopus., Fletcher RB., Development. May 1, 2006; 133 (9): 1703-14.            


Paraxial protocadherin mediates cell sorting and tissue morphogenesis by regulating C-cadherin adhesion activity., Chen X., J Cell Biol. July 17, 2006; 174 (2): 301-13.                


Heading in a new direction: implications of the revised fate map for understanding Xenopus laevis development., Lane MC., Dev Biol. August 1, 2006; 296 (1): 12-28.                


Hex acts with beta-catenin to regulate anteroposterior patterning via a Groucho-related co-repressor and Nodal., Zamparini AL., Development. September 1, 2006; 133 (18): 3709-22.                                    


Grainyhead-like 3, a transcription factor identified in a microarray screen, promotes the specification of the superficial layer of the embryonic epidermis., Chalmers AD., Mech Dev. September 1, 2006; 123 (9): 702-18.                                                  


Intrinsic chiral properties of the Xenopus egg cortex: an early indicator of left-right asymmetry?, Danilchik MV., Development. November 1, 2006; 133 (22): 4517-26.                        


Defining synphenotype groups in Xenopus tropicalis by use of antisense morpholino oligonucleotides., Rana AA., PLoS Genet. November 17, 2006; 2 (11): e193.                                    


Noggin signaling from Xenopus animal blastomere lineages promotes a neural fate in neighboring vegetal blastomere lineages., Huang S., Dev Dyn. January 1, 2007; 236 (1): 171-83.  


Identification of a novel conserved mixed-isoform B56 regulatory subunit and spatiotemporal regulation of protein phosphatase 2A during Xenopus laevis development., Baek S., BMC Dev Biol. May 31, 2007; 7 139.              


Xeya3 regulates survival and proliferation of neural progenitor cells within the anterior neural plate of Xenopus embryos., Kriebel M., Dev Dyn. June 1, 2007; 236 (6): 1526-34.  

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 ???pagination.result.next???