Results 1 - 50 of 552 results
16p12.1 Deletion Orthologs are Expressed in Motile Neural Crest Cells and are Important for Regulating Craniofacial Development in Xenopus laevis. , Lasser M., Front Genet. January 31, 2022; 13 833083.
Geoffroea decorticans fruit extracts inhibit the wnt/β-catenin pathway, a therapeutic target in cancer. , Somaini GC., Biochem Biophys Res Commun. March 26, 2021; 546 118-123.
Identification of Isthmin 1 as a Novel Clefting and Craniofacial Patterning Gene in Humans. , Lansdon LA., Genetics. January 1, 2018; 208 (1): 283-296.
Angiopoietin-like 4 Is a Wnt Signaling Antagonist that Promotes LRP6 Turnover. , Kirsch N., Dev Cell. October 9, 2017; 43 (1): 71-82.e6.
The RNF146 E3 ubiquitin ligase is required for the control of Wnt signaling and body pattern formation in Xenopus. , Zhu X., Mech Dev. October 1, 2017; 147 28-36.
E-cigarette aerosol exposure can cause craniofacial defects in Xenopus laevis embryos and mammalian neural crest cells. , Kennedy AE ., PLoS One. September 8, 2017; 12 (9): e0185729.
Genome-wide analysis of dorsal and ventral transcriptomes of the Xenopus laevis gastrula. , Ding Y ., Dev Biol. June 15, 2017; 426 (2): 176-187.
Expression profile of rrbp1 genes during embryonic development and in adult tissues of Xenopus laevis. , Liu GH ., Gene Expr Patterns. January 1, 2017; 23-24 1-6.
Hmga2 is required for neural crest cell specification in Xenopus laevis. , Macrì S., Dev Biol. March 1, 2016; 411 (1): 25-37.
Noggin4 is a long-range inhibitor of Wnt8 signalling that regulates head development in Xenopus laevis. , Eroshkin FM., Sci Rep. January 22, 2016; 6 23049.
Expression pattern of bcar3, a downstream target of Gata2, and its binding partner, bcar1, during Xenopus development. , Green YS., Gene Expr Patterns. January 1, 2016; 20 (1): 55-62.
pdzrn3 is required for pronephros morphogenesis in Xenopus laevis. , Marracci S ., Int J Dev Biol. January 1, 2016; 60 (1-3): 57-63.
Huntingtin is required for ciliogenesis and neurogenesis during early Xenopus development. , Haremaki T ., Dev Biol. December 15, 2015; 408 (2): 305-15.
G protein-coupled receptors Flop1 and Flop2 inhibit Wnt/ β-catenin signaling and are essential for head formation in Xenopus. , Miyagi A., Dev Biol. November 1, 2015; 407 (1): 131-44.
Sebox regulates mesoderm formation in early amphibian embryos. , Chen G., Dev Dyn. November 1, 2015; 244 (11): 1415-26.
Budgett's frog (Lepidobatrachus laevis): A new amphibian embryo for developmental biology. , Amin NM ., Dev Biol. September 15, 2015; 405 (2): 291-303.
The role of folate metabolism in orofacial development and clefting. , Wahl SE ., Dev Biol. September 1, 2015; 405 (1): 108-22.
Centrin-2 (Cetn2) mediated regulation of FGF/FGFR gene expression in Xenopus. , Shi J., Sci Rep. May 27, 2015; 5 10283.
Sulf1 has ligand-dependent effects on canonical and non-canonical Wnt signalling. , Fellgett SW., J Cell Sci. April 1, 2015; 128 (7): 1408-21.
Notum is required for neural and head induction via Wnt deacylation, oxidation, and inactivation. , Zhang X., Dev Cell. March 23, 2015; 32 (6): 719-30.
The serpin PN1 is a feedback regulator of FGF signaling in germ layer and primary axis formation. , Acosta H., Development. March 15, 2015; 142 (6): 1146-58.
NAD kinase controls animal NADP biosynthesis and is modulated via evolutionarily divergent calmodulin-dependent mechanisms. , Love NR ., Proc Natl Acad Sci U S A. February 3, 2015; 112 (5): 1386-91.
Biological and biochemical properties of two Xenopus laevis N-acetylgalactosaminyltransferases with contrasting roles in embryogenesis. , Voglmeir J., Comp Biochem Physiol B Biochem Mol Biol. February 1, 2015; 180 40-7.
Microarray identification of novel genes downstream of Six1, a critical factor in cranial placode, somite, and kidney development. , Yan B ., Dev Dyn. February 1, 2015; 244 (2): 181-210.
Heat shock 70-kDa protein 5 ( Hspa5) is essential for pronephros formation by mediating retinoic acid signaling. , Shi W., J Biol Chem. January 2, 2015; 290 (1): 577-89.
Xenopus laevis FGF receptor substrate 3 (XFrs3) is important for eye development and mediates Pax6 expression in lens placode through its Shp2-binding sites. , Kim YJ., Dev Biol. January 1, 2015; 397 (1): 129-39.
Temporal and spatial expression analysis of peripheral myelin protein 22 ( Pmp22) in developing Xenopus. , Tae HJ., Gene Expr Patterns. January 1, 2015; 17 (1): 26-30.
Early stages of induction of anterior head ectodermal properties in Xenopus embryos are mediated by transcriptional cofactor ldb1. , Plautz CZ., Dev Dyn. December 1, 2014; 243 (12): 1606-18.
Hedgehog activity controls opening of the primary mouth. , Tabler JM., Dev Biol. December 1, 2014; 396 (1): 1-7.
Optogenetic Control of Apoptosis in Targeted Tissues of Xenopus laevis Embryos. , Jewhurst K., J Cell Death. October 13, 2014; 7 25-31.
FoxA4 favours notochord formation by inhibiting contiguous mesodermal fates and restricts anterior neural development in Xenopus embryos. , Murgan S., PLoS One. October 2, 2014; 9 (10): e110559.
Characterization of the Rx1-dependent transcriptome during early retinal development. , Giudetti G., Dev Dyn. October 1, 2014; 243 (10): 1352-61.
Custos controls β-catenin to regulate head development during vertebrate embryogenesis. , Komiya Y., Proc Natl Acad Sci U S A. September 9, 2014; 111 (36): 13099-104.
Early expression of aromatase and the membrane estrogen receptor GPER in neuromasts reveals a role for estrogens in the development of the frog lateral line system. , Hamilton CK., Gen Comp Endocrinol. September 1, 2014; 205 242-50.
Gtpbp2 is required for BMP signaling and mesoderm patterning in Xenopus embryos. , Kirmizitas A., Dev Biol. August 15, 2014; 392 (2): 358-67.
Retinoic acid induced-1 ( Rai1) regulates craniofacial and brain development in Xenopus. , Tahir R ., Mech Dev. August 1, 2014; 133 91-104.
The extreme anterior domain is an essential craniofacial organizer acting through Kinin- Kallikrein signaling. , Jacox L., Cell Rep. July 24, 2014; 8 (2): 596-609.
Effects of antagonist of retinoid X receptor (UVI3003) on morphology and gene profile of Xenopus tropicalis embryos. , Zhu J., Environ Toxicol Pharmacol. July 1, 2014; 38 (1): 153-62.
Fgfr signaling is required as the early eye field forms to promote later patterning and morphogenesis of the eye. , Atkinson-Leadbeater K ., Dev Dyn. May 1, 2014; .
A secretory cell type develops alongside multiciliated cells, ionocytes and goblet cells, and provides a protective, anti-infective function in the frog embryonic mucociliary epidermis. , Dubaissi E ., Development. April 1, 2014; 141 (7): 1514-25.
Ras-dva1 small GTPase regulates telencephalon development in Xenopus laevis embryos by controlling Fgf8 and Agr signaling at the anterior border of the neural plate. , Tereshina MB., Biol Open. March 15, 2014; 3 (3): 192-203.
Behavioral observation of Xenopus tadpole swimming for neuroscience labs. , Li WC ., J Undergrad Neurosci Educ. March 15, 2014; 12 (2): A107-13.
Novel animal pole-enriched maternal mRNAs are preferentially expressed in neural ectoderm. , Grant PA ., Dev Dyn. March 1, 2014; 243 (3): 478-96.
Circadian genes, xBmal1 and xNocturnin, modulate the timing and differentiation of somites in Xenopus laevis. , Curran KL ., PLoS One. January 1, 2014; 9 (9): e108266.
Twin Xenopus laevis embryos appearing from flattened eggs. , Sato E., Proc Jpn Acad Ser B Phys Biol Sci. January 1, 2014; 90 (8): 307-12.
Expression pattern of zcchc24 during early Xenopus development. , Vitorino M., Int J Dev Biol. January 1, 2014; 58 (1): 45-50.
Developmental expression of Pitx2c in Xenopus trigeminal and profundal placodes. , Jeong YH., Int J Dev Biol. January 1, 2014; 58 (9): 701-4.
Comparative expression analysis of cysteine-rich intestinal protein family members crip1, 2 and 3 during Xenopus laevis embryogenesis. , Hempel A., Int J Dev Biol. January 1, 2014; 58 (10-12): 841-9.
Coco regulates dorsoventral specification of germ layers via inhibition of TGFβ signalling. , Bates TJ., Development. October 1, 2013; 140 (20): 4177-81.
The Nedd4-binding protein 3 ( N4BP3) is crucial for axonal and dendritic branching in developing neurons. , Schmeisser MJ., Neural Dev. September 17, 2013; 8 18.