Results 1 - 50 of 154 results
Kdm7a expression is spatiotemporally regulated in developing Xenopus laevis embryos, and its overexpression influences late retinal development. , Martini D., Dev Dyn. May 1, 2024; 253 (5): 508-518.
regeneration factors expressed on myeloid expression in macrophage-like cells is required for tail regeneration in Xenopus laevis tadpoles. , Deguchi M., Development. August 1, 2023; 150 (15):
The homeodomain transcription factor Ventx2 regulates respiratory progenitor cell number and differentiation timing during Xenopus lung development. , Rankin SA , Rankin SA ., Dev Growth Differ. September 1, 2022; 64 (7): 347-361.
Identification of ZBTB26 as a Novel Risk Factor for Congenital Hypothyroidism. , Vick P ., Genes (Basel). November 24, 2021; 12 (12):
Anaplastic lymphoma kinase (alk), a neuroblastoma associated gene, is expressed in neural crest domains during embryonic development of Xenopus. , Moreno MM., Gene Expr Patterns. June 1, 2021; 40 119183.
Identification and characterization of a fibroblast growth factor gene in the planarian Dugesia japonica. , Auwal MA., Dev Growth Differ. December 1, 2020; 62 (9): 527-539.
Sox17 and β-catenin co-occupy Wnt-responsive enhancers to govern the endoderm gene regulatory network. , Mukherjee S ., Elife. September 7, 2020; 9
Novel truncating mutations in CTNND1 cause a dominant craniofacial and cardiac syndrome. , Alharatani R., Hum Mol Genet. July 21, 2020; 29 (11): 1900-1921.
Spatiotemporal expression profile of embryonic and adult ankyrin repeat and EF- hand domain containing protein 1-encoding genes ankef1a and ankef1b in zebrafish. , Daniel JG., Gene Expr Patterns. December 1, 2019; 34 119069.
Jmjd6a regulates GSK3β RNA splicing in Xenopus laevis eye development. , Shin JY., PLoS One. July 30, 2019; 14 (7): e0219800.
Developmental expression of three prmt genes in Xenopus. , Wang CD , Wang CD , Wang CD ., Zool Res. March 18, 2019;
Comparisons of SOCS mRNA and protein levels in Xenopus provide insights into optic nerve regenerative success. , Priscilla R., Brain Res. February 1, 2019; 1704 150-160.
Comparative analysis of p4ha1 and p4ha2 expression during Xenopus laevis development. , Martini D., Int J Dev Biol. January 1, 2019; 63 (6-7): 311-316.
Investigating the function and possible biological role of an acetylcholine-gated chloride channel subunit (ACC-1) from the parasitic nematode Haemonchus contortus. , Callanan MK., Int J Parasitol Drugs Drug Resist. December 1, 2018; 8 (3): 526-533.
Innate Immune Response and Off-Target Mis-splicing Are Common Morpholino-Induced Side Effects in Xenopus. , Gentsch GE ., Dev Cell. March 12, 2018; 44 (5): 597-610.e10.
Mouth development. , Chen J ., Wiley Interdiscip Rev Dev Biol. September 1, 2017; 6 (5):
Noggin is required for first pharyngeal arch differentiation in the frog Xenopus tropicalis. , Young JJ ., Dev Biol. June 15, 2017; 426 (2): 245-254.
The Mesoderm-Forming Gene brachyury Regulates Ectoderm- Endoderm Demarcation in the Coral Acropora digitifera. , Yasuoka Y ., Curr Biol. November 7, 2016; 26 (21): 2885-2892.
Metabolomic approach for identifying and visualizing molecular tissue markers in tadpoles of Xenopus tropicalis by mass spectrometry imaging. , Goto-Inoue N., Biol Open. September 15, 2016; 5 (9): 1252-9.
Dissecting the pre-placodal transcriptome to reveal presumptive direct targets of Six1 and Eya1 in cranial placodes. , Riddiford N., Elife. August 31, 2016; 5
The cardiac-restricted protein ADP-ribosylhydrolase-like 1 is essential for heart chamber outgrowth and acts on muscle actin filament assembly. , Smith SJ ., Dev Biol. August 15, 2016; 416 (2): 373-88.
Pharmacological profile of Ascaris suum ACR-16, a new homomeric nicotinic acetylcholine receptor widely distributed in Ascaris tissues. , Abongwa M., Br J Pharmacol. August 1, 2016; 173 (16): 2463-77.
Spatiotemporal transcriptomics reveals the evolutionary history of the endoderm germ layer. , Hashimshony T., Nature. March 12, 2015; 519 (7542): 219-22.
Microarray identification of novel genes downstream of Six1, a critical factor in cranial placode, somite, and kidney development. , Yan B ., Dev Dyn. February 1, 2015; 244 (2): 181-210.
A gene expression map of the larval Xenopus laevis head reveals developmental changes underlying the evolution of new skeletal elements. , Square T ., Dev Biol. January 15, 2015; 397 (2): 293-304.
A Molecular atlas of Xenopus respiratory system development. , Rankin SA , Rankin SA ., Dev Dyn. January 1, 2015; 244 (1): 69-85.
Temporal and spatial expression analysis of peripheral myelin protein 22 ( Pmp22) in developing Xenopus. , Tae HJ., Gene Expr Patterns. January 1, 2015; 17 (1): 26-30.
Comparative expression analysis of pfdn6a and tcp1α during Xenopus development. , Marracci S ., Int J Dev Biol. January 1, 2015; 59 (4-6): 235-40.
Transcription factor AP2 epsilon ( Tfap2e) regulates neural crest specification in Xenopus. , Hong CS ., Dev Neurobiol. September 1, 2014; 74 (9): 894-906.
Sirtuin inhibitor Ex-527 causes neural tube defects, ventral edema formations, and gastrointestinal malformations in Xenopus laevis embryos. , Ohata Y., Dev Growth Differ. August 1, 2014; 56 (6): 460-8.
Evolutionarily conserved morphogenetic movements at the vertebrate head- trunk interface coordinate the transport and assembly of hypopharyngeal structures. , Lours-Calet C., Dev Biol. June 15, 2014; 390 (2): 231-46.
The evolutionary history of vertebrate cranial placodes--I: cell type evolution. , Patthey C., Dev Biol. May 1, 2014; 389 (1): 82-97.
The evolution and conservation of left- right patterning mechanisms. , Blum M ., Development. April 1, 2014; 141 (8): 1603-13.
Dysphagia and disrupted cranial nerve development in a mouse model of DiGeorge (22q11) deletion syndrome. , Karpinski BA., Dis Model Mech. February 1, 2014; 7 (2): 245-57.
Magnetic nanoparticles as intraocular drug delivery system to target retinal pigmented epithelium ( RPE). , Giannaccini M., Int J Mol Sci. January 22, 2014; 15 (1): 1590-605.
Peptide transporter isoforms are discriminated by the fluorophore-conjugated dipeptides β-Ala- and d-Ala-Lys-N-7-amino-4-methylcoumarin-3-acetic acid. , Kottra G., Physiol Rep. December 8, 2013; 1 (7): e00165.
Expression and functional characterization of Xhmg-at-hook genes in Xenopus laevis. , Macrì S., PLoS One. July 1, 2013; 8 (7): e69866.
Retinoic acid-activated Ndrg1a represses Wnt/ β-catenin signaling to allow Xenopus pancreas, oesophagus, stomach, and duodenum specification. , Zhang T., PLoS One. May 15, 2013; 8 (5): e65058.
Early development of the thymus in Xenopus laevis. , Lee YH , Lee YH ., Dev Dyn. February 1, 2013; 242 (2): 164-78.
Sizzled- tolloid interactions maintain foregut progenitors by regulating fibronectin-dependent BMP signaling. , Kenny AP ., Dev Cell. August 14, 2012; 23 (2): 292-304.
Histology of plastic embedded amphibian embryos and larvae. , Kurth T., Genesis. March 1, 2012; 50 (3): 235-50.
Inhibition of heart formation by lithium is an indirect result of the disruption of tissue organization within the embryo. , Martin LK., Dev Growth Differ. February 1, 2012; 54 (2): 153-66.
Inducible galectins are expressed in the inflamed pharynx of the ascidian Ciona intestinalis. , Vizzini A., Fish Shellfish Immunol. January 1, 2012; 32 (1): 101-9.
[Identification and evolutionary analysis of the Xenopus tropicalis bHLH transcription factors]. , Liu WY., Yi Chuan. January 1, 2012; 34 (1): 59-71.
Claudin-5 expression in the vasculature of the developing chick embryo. , Collins MM., Gene Expr Patterns. January 1, 2012; 12 (3-4): 123-9.
Sox9 function in craniofacial development and disease. , Lee YH , Lee YH ., Genesis. April 1, 2011; 49 (4): 200-8.
Microvascularization of the interhyoid muscle in larval Xenopus laevis (Daudin): Scanning electron microscopy of vascular corrosion casts and correlative light microscopy. , Rattey J ., J Morphol. March 1, 2011; 272 (3): 342-53.
Retinoic acid is a key regulatory switch determining the difference between lung and thyroid fates in Xenopus laevis. , Wang JH ., BMC Dev Biol. January 26, 2011; 11 75.
Expression patterns of genes encoding small GTPases Ras-dva-1 and Ras-dva-2 in the Xenopus laevis tadpoles. , Tereshina MB., Gene Expr Patterns. January 1, 2011; 11 (1-2): 156-61.
Microarray identification of novel downstream targets of FoxD4L1/D5, a critical component of the neural ectodermal transcriptional network. , Yan B ., Dev Dyn. December 1, 2010; 239 (12): 3467-80.