Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (762) Expression Attributions Wiki
XB-ANAT-18

Papers associated with hypophysis (and camp)

Limit to papers also referencing gene:
Show all hypophysis papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Managing the Oocyte Meiotic Arrest-Lessons from Frogs and Jellyfish., Jessus C., Cells. May 7, 2020; 9 (5):           


Serotonergic regulation of melanocyte conversion: A bioelectrically regulated network for stochastic all-or-none hyperpigmentation., Lobikin M., Sci Signal. October 6, 2015; 8 (397): ra99.


Origin of secretin receptor precedes the advent of tetrapoda: evidence on the separated origins of secretin and orexin., Tam JK., PLoS One. April 1, 2011; 6 (4): e19384.            


Differential neuroendocrine expression of multiple brain-derived neurotrophic factor transcripts., Kidane AH., Endocrinology. March 1, 2009; 150 (3): 1361-8.


Cloning and activation of the bullfrog apelin receptor: Gi/o coupling and high affinity for [Pro1]apelin-13., Moon MJ., Mol Cell Endocrinol. October 15, 2007; 277 (1-2): 51-60.


Identification of the endogenous ligands for chicken growth hormone-releasing hormone (GHRH) receptor: evidence for a separate gene encoding GHRH in submammalian vertebrates., Wang Y., Endocrinology. May 1, 2007; 148 (5): 2405-16.


Paradoxical antagonism of PACAP receptor signaling by VIP in Xenopus oocytes via the type-C natriuretic peptide receptor., Lelièvre V., Cell Signal. November 1, 2006; 18 (11): 2013-21.


Expression of sodium-iodide symporter mRNA in the thyroid gland of Xenopus laevis tadpoles: developmental expression, effects of antithyroidal compounds, and regulation by TSH., Opitz R., J Endocrinol. July 1, 2006; 190 (1): 157-70.


The effects of disruption of A kinase anchoring protein-protein kinase A association on protein kinase A signalling in neuroendocrine melanotroph cells of Xenopus laevis., Corstens GJ., J Neuroendocrinol. July 1, 2006; 18 (7): 477-83.


Cloning, characterization and expression of the D2 dopamine receptor from the tilapia pituitary., Levavi-Sivan B., Mol Cell Endocrinol. May 31, 2005; 236 (1-2): 17-30.


Neuronal, neurohormonal, and autocrine control of Xenopus melanotrope cell activity., Roubos EW., Ann N Y Acad Sci. April 1, 2005; 1040 172-83.


Involvement of G protein betagamma-subunits in diverse signaling induced by G(i/o)-coupled receptors: study using the Xenopus oocyte expression system., Uezono Y., Am J Physiol Cell Physiol. October 1, 2004; 287 (4): C885-94.


Direct cAMP signaling through G-protein-coupled receptors mediates growth cone attraction induced by pituitary adenylate cyclase-activating polypeptide., Guirland C., J Neurosci. March 15, 2003; 23 (6): 2274-83.


Maxadilan activates PAC1 receptors expressed in Xenopus laevis xelanophores., Pereira P., Pigment Cell Res. December 1, 2002; 15 (6): 461-6.


New aspects of signal transduction in the Xenopus laevis melanotrope cell., Roubos EW., Gen Comp Endocrinol. May 1, 2002; 126 (3): 255-60.


Functional characterization of a receptor for vasoactive-intestinal-peptide-related peptides in cultured dermal melanophores from Xenopus laevis., Marotti LA., Pigment Cell Res. April 1, 1999; 12 (2): 89-97.


Structure and function of the ovine type 1 corticotropin releasing factor receptor (CRF1) and a carboxyl-terminal variant., Myers DA., Mol Cell Endocrinol. September 25, 1998; 144 (1-2): 21-35.


Background adaptation by Xenopus laevis: a model for studying neuronal information processing in the pituitary pars intermedia., Roubos EW., Comp Biochem Physiol A Physiol. November 1, 1997; 118 (3): 533-50.


Sauvagine and TRH differentially stimulate proopiomelanocortin biosynthesis in the Xenopus laevis intermediate pituitary., Dotman CH., Neuroendocrinology. August 1, 1997; 66 (2): 106-13.


Opioid receptors from a lower vertebrate (Catostomus commersoni): sequence, pharmacology, coupling to a G-protein-gated inward-rectifying potassium channel (GIRK1), and evolution., Darlison MG., Proc Natl Acad Sci U S A. July 22, 1997; 94 (15): 8214-9.


Neuroendocrine gamma-aminobutyric acid (GABA): functional differences in GABAA versus GABAB receptor inhibition of the melanotrope cell of Xenopus laevis., Buzzi M., Endocrinology. January 1, 1997; 138 (1): 203-12.


Calcium oscillations in melanotrope cells of Xenopus laevis are differentially regulated by cAMP-dependent and cAMP-independent mechanisms., Lieste JR., Cell Calcium. October 1, 1996; 20 (4): 329-37.


Inhibition of alpha-MSH secretion is associated with increased cyclic-AMP egress from the neurointermediate lobe of Xenopus laevis., Leenders HJ., Life Sci. November 17, 1995; 57 (26): 2447-53.


Involvement of cAMP in inhibition of maturation of follicle-enclosed oocytes by actinomycin D in Xenopus laevis and Rana temporaria., Skoblina MN., J Exp Zool. October 1, 1995; 273 (2): 142-8.


Combinatorial diffusion assay used to identify topically active melanocyte-stimulating hormone receptor antagonists., Quillan JM., Proc Natl Acad Sci U S A. March 28, 1995; 92 (7): 2894-8.            


[The role of cAMP in suppressing the maturation of follicle-enclosed oocytes in the common frog and the clawed toad after their treatment with actinomycin D]., Skoblina MN., Ontogenez. January 1, 1993; 24 (1): 56-65.


Receptors that couple to 2 classes of G proteins increase cAMP and activate CFTR expressed in Xenopus oocytes., Uezono Y., Recept Channels. January 1, 1993; 1 (3): 233-41.


Bovine inhibin immediately inhibits the electrophysiological response to chorionic gonadotrophin in ovarian follicles of Xenopus laevis., Murray-McIntosh RP., Endocrinology. June 1, 1991; 128 (6): 3310-2.


Expression of functional pituitary somatostatin receptors in Xenopus oocytes., White MM., Proc Natl Acad Sci U S A. January 1, 1990; 87 (1): 133-6.


Regulation of cyclic-AMP synthesis in amphibian melanotrope cells through catecholamine and GABA receptors., Verburg-van Kemenade BM., Life Sci. May 11, 1987; 40 (19): 1859-67.


Regulation of pro-opiomelanocortin synthesis by dopamine and cAMP in the amphibian pituitary intermediate lobe., Loh YP., J Biol Chem. July 25, 1985; 260 (15): 8956-63.

???pagination.result.page??? 1