Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (3411) Expression Attributions Wiki
XB-ANAT-297

Papers associated with ventral

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Somitomeres: mesodermal segments of vertebrate embryos., Jacobson AG., Development. January 1, 1988; 104 Suppl 209-20.  


Specificity and retinotectal projections of quarter-eye fragments in Xenopus laevis., Brändle K., Acta Biol Hung. January 1, 1988; 39 (2-3): 191-5.


The distribution of tenascin coincides with pathways of neural crest cell migration., Mackie EJ., Development. January 1, 1988; 102 (1): 237-50.              


Induction of mesodermal tissues by acidic and basic heparin binding growth factors., Grunz H., Cell Differ. February 1, 1988; 22 (3): 183-9.


Dorsal roots are absent from the tail of larval Xenopus., Nordlander RH., Dev Biol. February 9, 1988; 440 (2): 391-5.


Cellular determination in the Xenopus retina is independent of lineage and birth date., Holt CE., Neuron. March 1, 1988; 1 (1): 15-26.


A developmental and ultrastructural study of the optic chiasma in Xenopus., Wilson MA., Development. March 1, 1988; 102 (3): 537-53.


Reinvestigation of the role of the optic vesicle in embryonic lens induction., Grainger RM., Development. March 1, 1988; 102 (3): 517-26.


The development of acetylcholinesterase activity in the embryonic nervous system of the frog, Xenopus laevis., Moody SA., Dev Biol. April 1, 1988; 467 (2): 225-32.


Dorsal and ventral cells of cleavage-stage Xenopus embryos show the same ability to induce notochord and somite formation., Pierce KE., Dev Biol. April 1, 1988; 126 (2): 228-32.


Positional variations in germinal cell growth in pigment-chimeric eyes of Xenopus: posterior half of the developing eye studied in genetic chimerae and in computer simulations., Hunt RK., Proc Natl Acad Sci U S A. May 1, 1988; 85 (10): 3459-63.


The entire mesodermal mantle behaves as Spemann's organizer in dorsoanterior enhanced Xenopus laevis embryos., Kao KR., Dev Biol. May 1, 1988; 127 (1): 64-77.                      


Regional expression, pattern and timing of convergence and extension during gastrulation of Xenopus laevis., Keller R., Development. May 1, 1988; 103 (1): 193-209.


Mapping of neural crest pathways in Xenopus laevis using inter- and intra-specific cell markers., Krotoski DM., Dev Biol. May 1, 1988; 127 (1): 119-32.


Microinjection of synthetic Xhox-1A homeobox mRNA disrupts somite formation in developing Xenopus embryos., Harvey RP., Cell. June 3, 1988; 53 (5): 687-97.              


A transient array of parallel microtubules in frog eggs: potential tracks for a cytoplasmic rotation that specifies the dorso-ventral axis., Elinson RP., Dev Biol. July 1, 1988; 128 (1): 185-97.


Inductive effects of fibroblast growth factor and lithium ion on Xenopus blastula ectoderm., Slack JM., Development. July 1, 1988; 103 (3): 581-90.


Development and characterization of commissural interneurones in the spinal cord of Xenopus laevis embryos revealed by antibodies to glycine., Roberts A., Development. July 1, 1988; 103 (3): 447-61.


Patterns of N-CAM expression during myogenesis in Xenopus laevis., Kay BK., Development. July 1, 1988; 103 (3): 463-71.            


Patterns of junctional communication during development of the early amphibian embryo., Guthrie S., Development. August 1, 1988; 103 (4): 769-83.


The distribution of fibronectin and tenascin along migratory pathways of the neural crest in the trunk of amphibian embryos., Epperlein HH., Development. August 1, 1988; 103 (4): 743-56.                  


Prospective Neural Areas and their Morphogenetic Movements during Neural Plate Formation in the Xenopus Embryo. II. Disposition of Transplanted Ectoderm Pieces of X. borealis Animal Cap in Prospective Neural Areas of Albino X. laevis gastrulae.: (developmental fate/neural plate area/Xenopus embryo/chimera/quinacrine)., Suzuki AS., Dev Growth Differ. August 1, 1988; 30 (4): 391-400.


A ventrally localized inhibitor of melanization in Xenopus laevis skin., Fukuzawa T., Dev Biol. September 1, 1988; 129 (1): 25-36.


Accumulation and decay of DG42 gene products follow a gradient pattern during Xenopus embryogenesis., Rosa F., Dev Biol. September 1, 1988; 129 (1): 114-23.            


Expression of Epi 1, an epidermis-specific marker in Xenopus laevis embryos, is specified prior to gastrulation., London C., Dev Biol. October 1, 1988; 129 (2): 380-9.              


Immunocytochemical identification of non-neuronal intermediate filament proteins in the developing Xenopus laevis nervous system., Szaro BG., Dev Biol. October 1, 1988; 471 (2): 207-24.                    


Gene expression in the embryonic nervous system of Xenopus laevis., Richter K., Proc Natl Acad Sci U S A. November 1, 1988; 85 (21): 8086-90.      


Mesoderm induction in the future tail region of Xenopus., Woodland HR., Rouxs Arch Dev Biol. December 1, 1988; 197 (7): 441-446.


A gradient of homeodomain protein in developing forelimbs of Xenopus and mouse embryos., Oliver G., Cell. December 23, 1988; 55 (6): 1017-24.        


[The spatio-temporal distribution of single-stranded breaks in nuclear DNA in sections of clawed toad embryos during gastrulation and neurulation]., Zaraĭskiĭ AG., Ontogenez. January 1, 1989; 20 (5): 471-7.


Control of melanoblast differentiation in amphibia by alpha-melanocyte stimulating hormone, a serum melanization factor, and a melanization inhibiting factor., Fukuzawa T., Pigment Cell Res. January 1, 1989; 2 (3): 171-81.


A step in embryonic axis specification in Xenopus laevis is simulated by cytoplasmic displacements elicited by gravity and centrifugal force., Black SD., Adv Space Res. January 1, 1989; 9 (11): 159-68.


A whole-mount immunocytochemical analysis of the expression of the intermediate filament protein vimentin in Xenopus., Dent JA., Development. January 1, 1989; 105 (1): 61-74.                      


Embryonic development of Xenopus studied in a cell culture system with tissue-specific monoclonal antibodies., Mitani S., Development. January 1, 1989; 105 (1): 53-9.        


Development of early swimming in Xenopus laevis embryos: myotomal musculature, its innervation and activation., van Mier P., Neuroscience. January 1, 1989; 32 (1): 113-26.


Experimental analysis of ventral blood island hematopoiesis in Xenopus embryonic chimeras., Smith PB., Dev Biol. February 1, 1989; 131 (2): 302-12.


Dorsalization of mesoderm induction by lithium., Kao KR., Dev Biol. March 1, 1989; 132 (1): 81-90.


The relationship between talin and acetylcholine receptor clusters in Xenopus muscle cells., Rochlin MW., J Cell Sci. March 1, 1989; 92 ( Pt 3) 461-72.


XlHbox 8: a novel Xenopus homeo protein restricted to a narrow band of endoderm., Wright CV., Development. April 1, 1989; 105 (4): 787-94.          


Marchi-positive myelinoid bodies at the transition between the central and the peripheral nervous system in some vertebrates., Corneliuson O., J Anat. April 1, 1989; 163 17-31.


Lithium-induced teratogenesis in frog embryos prevented by a polyphosphoinositide cycle intermediate or a diacylglycerol analog., Busa WB., Dev Biol. April 1, 1989; 132 (2): 315-24.


Signals from the dorsal blastopore lip region during gastrulation bias the ectoderm toward a nonepidermal pathway of differentiation in Xenopus laevis., Savage R., Dev Biol. May 1, 1989; 133 (1): 157-68.


Bimodal and graded expression of the Xenopus homeobox gene Xhox3 during embryonic development., Ruiz i Altaba A., Development. May 1, 1989; 106 (1): 173-83.                  


Specification and Establishment of Dorsal-Ventral Polarity in Eggs and Embryos of Xenopus laevis: (body plan specification/dorsal-ventral polarity/Xenopus laevis/"antero-dorsal structure-forming activity")., Wakahara M., Dev Growth Differ. June 1, 1989; 31 (3): 197-207.


Hyperdorsoanterior embryos from Xenopus eggs treated with D2O., Scharf SR., Dev Biol. July 1, 1989; 134 (1): 175-88.


Lithium changes the ectodermal fate of individual frog blastomeres because it causes ectopic neural plate formation., Klein SL., Development. July 1, 1989; 106 (3): 599-610.


Quantitative lineage analysis of the origin of frog primary motor and sensory neurons from cleavage stage blastomeres., Moody SA., J Neurosci. August 1, 1989; 9 (8): 2919-30.


Experimental reversal of the normal dorsal-ventral timing of blastopore formation does not reverse axis polarity in Xenopus laevis embryos., Black SD., Dev Biol. August 1, 1989; 134 (2): 376-81.


The Influence of Magnesium Ions on the NMDA Mediated Responses of Ventral Rhythmic Neurons in the Spinal Cord of Xenopus Embryos., Soffe SR., Eur J Neurosci. September 1, 1989; 1 (5): 507-515.


A single-cell analysis of early retinal ganglion cell differentiation in Xenopus: from soma to axon tip., Holt CE., J Neurosci. September 1, 1989; 9 (9): 3123-45.                                

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ???pagination.result.next???