Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (71) Expression Attributions Wiki
XB-ANAT-1595

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Prenatal development of central optic pathways in albino rats., Lund RD., J Comp Neurol. January 15, 1976; 165 (2): 247-64.


Selection of appropriate medial branch of the optic tract by fibres of ventral retinal origin during development and in regeneration: an autoradiographic study in Xenopus., Straznicky C., J Embryol Exp Morphol. April 1, 1979; 50 253-67.


The central pathways of optic fibres in Xenopus tadpoles., Steedman JG., J Embryol Exp Morphol. April 1, 1979; 50 199-215.


Ultrastructural study of degeneration and regeneration in the amphibian tectum., Ostberg A., Dev Biol. June 8, 1979; 168 (3): 441-55.


The retinotectal fibre pathways from normal and compound eyes in Xenopus., Fawcett JW., J Embryol Exp Morphol. December 1, 1982; 72 19-37.


Pathways of Xenopus optic fibres regenerating from normal and compound eyes under various conditions., Gaze RM., J Embryol Exp Morphol. February 1, 1983; 73 17-38.


Fibre order in the normal Xenopus optic tract, near the chiasma., Fawcett JW., J Embryol Exp Morphol. October 1, 1984; 83 1-14.


The distribution of fibres in the optic tract after contralateral translocation of an eye in Xenopus., Taylor JS., J Embryol Exp Morphol. February 1, 1985; 85 225-38.


Factors guiding regenerating retinotectal fibres in the frog Xenopus laevis., Fawcett JW., J Embryol Exp Morphol. December 1, 1985; 90 233-50.


Homing behaviour of axons in the embryonic vertebrate brain., Harris WA., Nature. March 20, 1986; 320 (6059): 266-9.


Fibre organization and reorganization in the retinotectal projection of Xenopus., Taylor JS., Development. March 1, 1987; 99 (3): 393-410.


Specific cell surface labels in the visual centers of Xenopus laevis tadpole identified using monoclonal antibodies., Takagi S., Dev Biol. July 1, 1987; 122 (1): 90-100.                    


The early development of neurons with GABA immunoreactivity in the CNS of Xenopus laevis embryos., Roberts A., J Comp Neurol. July 15, 1987; 261 (3): 435-49.


Retinal axons with and without their somata, growing to and arborizing in the tectum of Xenopus embryos: a time-lapse video study of single fibres in vivo., Harris WA., Development. September 1, 1987; 101 (1): 123-33.


A developmental and ultrastructural study of the optic chiasma in Xenopus., Wilson MA., Development. March 1, 1988; 102 (3): 537-53.


Local positional cues in the neuroepithelium guide retinal axons in embryonic Xenopus brain., Harris WA., Nature. May 18, 1989; 339 (6221): 218-21.


A single-cell analysis of early retinal ganglion cell differentiation in Xenopus: from soma to axon tip., Holt CE., J Neurosci. September 1, 1989; 9 (9): 3123-45.                                


The directed growth of retinal axons towards surgically transposed tecta in Xenopus; an examination of homing behaviour by retinal ganglion cell axons., Taylor JS., Development. January 1, 1990; 108 (1): 147-58.


The induction of an anomalous ipsilateral retinotectal projection in Xenopus laevis., Taylor JS., Anat Embryol (Berl). January 1, 1990; 181 (4): 393-404.


Correlated onset and patterning of proopiomelanocortin gene expression in embryonic Xenopus brain and pituitary., Hayes WP., Development. November 1, 1990; 110 (3): 747-57.              


Microglia in tadpoles of Xenopus laevis: normal distribution and the response to optic nerve injury., Goodbrand IA., Anat Embryol (Berl). January 1, 1991; 184 (1): 71-82.


The early development of the frog retinotectal projection., Taylor JS., Development. January 1, 1991; Suppl 2 95-104.            


Cephalic expression and molecular characterization of Xenopus En-2., Hemmati-Brivanlou A., Development. March 1, 1991; 111 (3): 715-24.    


Distribution of galanin-like immunoreactivity in the brain of Rana esculenta and Xenopus laevis., Lázár GY., J Comp Neurol. August 1, 1991; 310 (1): 45-67.                                                              


Development of the tectum and diencephalon in relation to the time of arrival of the earliest optic fibres in Xenopus., Gaze RM., Anat Embryol (Berl). January 1, 1992; 185 (6): 599-612.


Identification and developmental expression of a novel low molecular weight neuronal intermediate filament protein expressed in Xenopus laevis., Charnas LR., J Neurosci. August 1, 1992; 12 (8): 3010-24.                      


Retinal specificity in eye fragments: investigations on the retinotectal projections of different quarter-eyes in Xenopus laevis., Brändle K., Exp Brain Res. January 1, 1994; 102 (2): 272-86.


CNS myelin and oligodendrocytes of the Xenopus spinal cord--but not optic nerve--are nonpermissive for axon growth., Lang DM., J Neurosci. January 1, 1995; 15 (1 Pt 1): 99-109.            


The optic tract and tectal ablation influence the composition of neurofilaments in regenerating optic axons of Xenopus laevis., Zhao Y., J Neurosci. June 1, 1995; 15 (6): 4629-40.                      


Absence of topography in precociously innervated tecta., Chien CB., Development. August 1, 1995; 121 (8): 2621-31.


FGF signaling and target recognition in the developing Xenopus visual system., McFarlane S., Neuron. November 1, 1995; 15 (5): 1017-28.


Inhibition of protein tyrosine kinases impairs axon extension in the embryonic optic tract., Worley T., J Neurosci. April 1, 1996; 16 (7): 2294-306.


Expression and herbimycin A-sensitive localization of pp125FAK in retinal growth cones., Worley TL., Neuroreport. April 26, 1996; 7 (6): 1133-7.


The cellular patterns of BDNF and trkB expression suggest multiple roles for BDNF during Xenopus visual system development., Cohen-Cory S., Dev Biol. October 10, 1996; 179 (1): 102-15.              


Expression of a novel N-CAM glycoform (NOC-1) on axon tracts in embryonic Xenopus brain., Anderson RB., Dev Dyn. November 1, 1996; 207 (3): 263-9.      


Perturbation of the developing Xenopus retinotectal projection following injections of antibodies against beta1 integrin receptors and N-cadherin., Stone KE., Dev Biol. November 25, 1996; 180 (1): 297-310.


Essential role of heparan sulfates in axon navigation and targeting in the developing visual system., Walz A., Development. June 1, 1997; 124 (12): 2421-30.        


Myosin functions in Xenopus retinal ganglion cell growth cone motility in vivo., Ruchhoeft ML., J Neurobiol. June 5, 1997; 32 (6): 567-78.


Xefiltin, a Xenopus laevis neuronal intermediate filament protein, is expressed in actively growing optic axons during development and regeneration., Zhao Y., J Neurobiol. November 20, 1997; 33 (6): 811-24.                  


A role for voltage-gated potassium channels in the outgrowth of retinal axons in the developing visual system., McFarlane S., J Neurosci. February 1, 2000; 20 (3): 1020-9.                  


Semaphorin 3A elicits stage-dependent collapse, turning, and branching in Xenopus retinal growth cones., Campbell DS., J Neurosci. November 1, 2001; 21 (21): 8538-47.              


Specific heparan sulfate structures involved in retinal axon targeting., Irie A., Development. January 1, 2002; 129 (1): 61-70.      


GABA and development of the Xenopus optic projection., Ferguson SC., J Neurobiol. June 15, 2002; 51 (4): 272-84.              


Metalloproteases and guidance of retinal axons in the developing visual system., Webber CA., J Neurosci. September 15, 2002; 22 (18): 8091-100.                  


Chondroitin sulfate disrupts axon pathfinding in the optic tract and alters growth cone dynamics., Walz A., J Neurobiol. November 15, 2002; 53 (3): 330-42.          


Increased expression of multiple neurofilament mRNAs during regeneration of vertebrate central nervous system axons., Gervasi C., J Comp Neurol. June 23, 2003; 461 (2): 262-75.            


Fibroblast growth factors redirect retinal axons in vitro and in vivo., Webber CA., Dev Biol. November 1, 2003; 263 (1): 24-34.            


Presynaptic protein kinase C controls maturation and branch dynamics of developing retinotectal arbors: possible role in activity-driven sharpening., Schmidt JT., J Neurobiol. February 15, 2004; 58 (3): 328-40.


Neogenin interacts with RGMa and netrin-1 to guide axons within the embryonic vertebrate forebrain., Wilson NH., Dev Biol. August 15, 2006; 296 (2): 485-98.                      


Electroporation-based methods for in vivo, whole mount and primary culture analysis of zebrafish brain development., Hendricks M., Neural Dev. March 15, 2007; 2 6.        

???pagination.result.page??? 1 2 ???pagination.result.next???