Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (1369) Expression Attributions Wiki
XB-ANAT-247

Papers associated with neural plate

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

The first cleavage plane and the embryonic axis are determined by separate mechanisms in Xenopus laevis. I. Independence in undisturbed embryos., Danilchik MV., Dev Biol. July 1, 1988; 128 (1): 58-64.


The distribution of fibronectin and tenascin along migratory pathways of the neural crest in the trunk of amphibian embryos., Epperlein HH., Development. August 1, 1988; 103 (4): 743-56.                  


Accumulation and decay of DG42 gene products follow a gradient pattern during Xenopus embryogenesis., Rosa F., Dev Biol. September 1, 1988; 129 (1): 114-23.            


Effects of altered expression of the neural cell adhesion molecule, N-CAM, on early neural development in Xenopus embryos., Kintner C., Neuron. September 1, 1988; 1 (7): 545-55.


Expression of Epi 1, an epidermis-specific marker in Xenopus laevis embryos, is specified prior to gastrulation., London C., Dev Biol. October 1, 1988; 129 (2): 380-9.              


Lack of axon regeneration of isthmic neurons in juvenile Xenopus., McCart R., Neurosci Lett. October 5, 1988; 92 (2): 143-8.


Gene expression in the embryonic nervous system of Xenopus laevis., Richter K., Proc Natl Acad Sci U S A. November 1, 1988; 85 (21): 8086-90.      


Expression of intermediate filament proteins during development of Xenopus laevis. III. Identification of mRNAs encoding cytokeratins typical of complex epithelia., Fouquet B., Development. December 1, 1988; 104 (4): 533-48.                      


Expression of intermediate filament proteins during development of Xenopus laevis. II. Identification and molecular characterization of desmin., Herrmann H., Development. February 1, 1989; 105 (2): 299-307.              


Expression of intermediate filament proteins during development of Xenopus laevis. I. cDNA clones encoding different forms of vimentin., Herrmann H., Development. February 1, 1989; 105 (2): 279-98.                      


Differential gene expression in the anterior neural plate during gastrulation of Xenopus laevis., Jamrich M., Development. April 1, 1989; 105 (4): 779-86.            


Expression of an engrailed-related protein is induced in the anterior neural ectoderm of early Xenopus embryos., Brivanlou AH., Development. July 1, 1989; 106 (3): 611-7.                  


Lithium changes the ectodermal fate of individual frog blastomeres because it causes ectopic neural plate formation., Klein SL., Development. July 1, 1989; 106 (3): 599-610.


Progressive determination during formation of the anteroposterior axis in Xenopus laevis., Sive HL., Cell. July 14, 1989; 58 (1): 171-80.


Quantitative lineage analysis of the origin of frog primary motor and sensory neurons from cleavage stage blastomeres., Moody SA., J Neurosci. August 1, 1989; 9 (8): 2919-30.


Experimental reversal of the normal dorsal-ventral timing of blastopore formation does not reverse axis polarity in Xenopus laevis embryos., Black SD., Dev Biol. August 1, 1989; 134 (2): 376-81.


Ectopic expression of the proto-oncogene int-1 in Xenopus embryos leads to duplication of the embryonic axis., McMahon AP., Cell. September 22, 1989; 58 (6): 1075-84.                


Early neurogenesis in Xenopus: the spatio-temporal pattern of proliferation and cell lineages in the embryonic spinal cord., Hartenstein V., Neuron. October 1, 1989; 3 (4): 399-411.


The appearance of acetylated alpha-tubulin during early development and cellular differentiation in Xenopus., Chu DT., Dev Biol. November 1, 1989; 136 (1): 104-17.                  


A quantitative description of excitatory amino acid neurotransmitter responses on cultured embryonic Xenopus spinal neurons., Sands SB., Dev Biol. November 20, 1989; 502 (2): 375-86.


Spatial aspects of neural induction in Xenopus laevis., Jones EA., Development. December 1, 1989; 107 (4): 785-91.          


Molecular approach to dorsoanterior development in Xenopus laevis., Sato SM., Dev Biol. January 1, 1990; 137 (1): 135-41.          


Fibronectin-rich fibrillar extracellular matrix controls cell migration during amphibian gastrulation., Boucaut JC., Int J Dev Biol. March 1, 1990; 34 (1): 139-47.              


Mapping of the presumptive brain regions in the neural plate of Xenopus laevis., Eagleson GW., J Neurobiol. April 1, 1990; 21 (3): 427-40.


The effects of N-cadherin misexpression on morphogenesis in Xenopus embryos., Detrick RJ., Neuron. April 1, 1990; 4 (4): 493-506.


A developmentally regulated, nervous system-specific gene in Xenopus encodes a putative RNA-binding protein., Richter K., New Biol. June 1, 1990; 2 (6): 556-65.


Early tissue interactions leading to embryonic lens formation in Xenopus laevis., Henry JJ., Dev Biol. September 1, 1990; 141 (1): 149-63.


A potassium channel gene is expressed at neural induction., Ribera AB., Neuron. November 1, 1990; 5 (5): 691-701.


Region-specific neural induction of an engrailed protein by anterior notochord in Xenopus., Hemmati-Brivanlou A., Science. November 9, 1990; 250 (4982): 800-2.


Tissue interactions involving cranial neural crest in cartilage formation in Xenopus laevis (Daudin)., Seufert DW., Cell Differ Dev. December 1, 1990; 32 (2): 153-65.


The distribution of E-cadherin during Xenopus laevis development., Levi G., Development. January 1, 1991; 111 (1): 159-69.                


Neural induction., Phillips CR., Methods Cell Biol. January 1, 1991; 36 329-46.


Development of the Xenopus laevis hatching gland and its relationship to surface ectoderm patterning., Drysdale TA., Development. February 1, 1991; 111 (2): 469-78.            


Examining pattern formation in mouse, chicken and frog embryos with an En-specific antiserum., Davis CA., Development. February 1, 1991; 111 (2): 287-98.          


Differential expression of two cadherins in Xenopus laevis., Angres B., Development. March 1, 1991; 111 (3): 829-44.                    


Cephalic expression and molecular characterization of Xenopus En-2., Hemmati-Brivanlou A., Development. March 1, 1991; 111 (3): 715-24.    


Changes in neural and lens competence in Xenopus ectoderm: evidence for an autonomous developmental timer., Servetnick M., Development. May 1, 1991; 112 (1): 177-88.                  


Distribution and expression of two interactive extracellular matrix proteins, cytotactin and cytotactin-binding proteoglycan, during development of Xenopus laevis. I. Embryonic development., Williamson DA., J Morphol. August 1, 1991; 209 (2): 189-202.


Distribution of galanin-like immunoreactivity in the brain of Rana esculenta and Xenopus laevis., Lázár GY., J Comp Neurol. August 1, 1991; 310 (1): 45-67.                                                              


Retinoic acid modifies the pattern of cell differentiation in the central nervous system of neurula stage Xenopus embryos., Ruiz i Altaba A., Development. August 1, 1991; 112 (4): 945-58.                


Homeogenetic neural induction in Xenopus., Servetnick M., Dev Biol. September 1, 1991; 147 (1): 73-82.      


XLPOU 1 and XLPOU 2, two novel POU domain genes expressed in the dorsoanterior region of Xenopus embryos., Agarwal VR., Dev Biol. October 1, 1991; 147 (2): 363-73.                  


Hensen's node induces neural tissue in Xenopus ectoderm. Implications for the action of the organizer in neural induction., Kintner CR., Development. December 1, 1991; 113 (4): 1495-505.


Retinoic acid causes abnormal development and segmental patterning of the anterior hindbrain in Xenopus embryos., Papalopulu N., Development. December 1, 1991; 113 (4): 1145-58.                          


Localization of a nervous system-specific class II beta-tubulin gene in Xenopus laevis embryos by whole-mount in situ hybridization., Oschwald R., Int J Dev Biol. December 1, 1991; 35 (4): 399-405.      


Voltage-gated calcium currents in cultured embryonic Xenopus spinal neurones., Barish ME., J Physiol. December 1, 1991; 444 523-43.


Recent progress on the mechanisms of embryonic lens formation., Grainger RM., Eye (Lond). January 1, 1992; 6 ( Pt 2) 117-22.


Molecular bases of early neural development in Xenopus embryos., Kintner C., Annu Rev Neurosci. January 1, 1992; 15 251-84.


Planar induction of convergence and extension of the neural plate by the organizer of Xenopus., Keller R., Dev Dyn. March 1, 1992; 193 (3): 218-34.


The cellular basis of the convergence and extension of the Xenopus neural plate., Keller R., Dev Dyn. March 1, 1992; 193 (3): 199-217.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 ???pagination.result.next???