Results 1 - 50 of 316 results
The complete dorsal structure is formed from only the blastocoel roof of Xenopus blastula: insight into the gastrulation movement evolutionarily conserved among chordates. , Sato Y., Dev Genes Evol. June 1, 2023; 233 (1): 1-12.
Cilia-localized GID/CTLH ubiquitin ligase complex regulates protein homeostasis of sonic hedgehog signaling components. , Hantel F., J Cell Sci. May 1, 2022; 135 (9):
Targeted search for scaling genes reveals matrixmetalloproteinase 3 as a scaler of the dorsal- ventral pattern in Xenopus laevis embryos. , Orlov EE., Dev Cell. January 10, 2022; 57 (1): 95-111.e12.
Cell-cell contact landscapes in Xenopus gastrula tissues. , Barua D., Proc Natl Acad Sci U S A. September 28, 2021; 118 (39):
Capillarity and active cell movement at mesendoderm translocation in the Xenopus gastrula. , Nagel M., Development. March 29, 2021; 148 (18):
Furry is required for cell movements during gastrulation and functionally interacts with NDR1. , Cervino AS., Sci Rep. March 23, 2021; 11 (1): 6607.
Surface contraction waves or cell proliferation waves in the presumptive neurectoderm during amphibian gastrulation: Mexican axolotl versus African clawed frog. , Desnitskiy AG., Biosystems. December 1, 2020; 198 104286.
A direct role for SNX9 in the biogenesis of filopodia. , Jarsch IK., J Cell Biol. April 6, 2020; 219 (4):
Intracellular calcium signal at the leading edge regulates mesodermal sheet migration during Xenopus gastrulation. , Hayashi K., Sci Rep. February 5, 2018; 8 (1): 2433.
Evo-engineering and the cellular and molecular origins of the vertebrate spinal cord. , Steventon B ., Dev Biol. December 1, 2017; 432 (1): 3-13.
Genome-wide analysis of dorsal and ventral transcriptomes of the Xenopus laevis gastrula. , Ding Y ., Dev Biol. June 15, 2017; 426 (2): 176-187.
A novel role of the organizer gene Goosecoid as an inhibitor of Wnt/PCP-mediated convergent extension in Xenopus and mouse. , Ulmer B., Sci Rep. February 21, 2017; 7 43010.
Zic2 mutation causes holoprosencephaly via disruption of NODAL signalling. , Houtmeyers R., Hum Mol Genet. September 15, 2016; 25 (18): 3946-3959.
A Retinoic Acid- Hedgehog Cascade Coordinates Mesoderm-Inducing Signals and Endoderm Competence during Lung Specification. , Rankin SA , Rankin SA ., Cell Rep. June 28, 2016; 16 (1): 66-78.
Specification of anteroposterior axis by combinatorial signaling during Xenopus development. , Carron C., Wiley Interdiscip Rev Dev Biol. January 1, 2016; 5 (2): 150-68.
G protein-coupled receptors Flop1 and Flop2 inhibit Wnt/ β-catenin signaling and are essential for head formation in Xenopus. , Miyagi A., Dev Biol. November 1, 2015; 407 (1): 131-44.
Centrin-2 (Cetn2) mediated regulation of FGF/FGFR gene expression in Xenopus. , Shi J., Sci Rep. May 27, 2015; 5 10283.
The emergence of Pax7-expressing muscle stem cells during vertebrate head muscle development. , Nogueira JM., Front Aging Neurosci. May 19, 2015; 7 62.
Sulf1 has ligand-dependent effects on canonical and non-canonical Wnt signalling. , Fellgett SW., J Cell Sci. April 1, 2015; 128 (7): 1408-21.
PAPC mediates self/non-self-distinction during Snail1-dependent tissue separation. , Luu O., J Cell Biol. March 16, 2015; 208 (6): 839-56.
E2a is necessary for Smad2/3-dependent transcription and the direct repression of lefty during gastrulation. , Wills AE ., Dev Cell. February 9, 2015; 32 (3): 345-57.
The alternative splicing regulator Tra2b is required for somitogenesis and regulates splicing of an inhibitory Wnt11b isoform. , Dichmann DS ., Cell Rep. February 3, 2015; 10 (4): 527-36.
Early development of the neural plate: new roles for apoptosis and for one of its main effectors caspase-3. , Juraver-Geslin HA ., Genesis. February 1, 2015; 53 (2): 203-24.
Leiomodin 3 and tropomodulin 4 have overlapping functions during skeletal myofibrillogenesis. , Nworu CU., J Cell Sci. January 15, 2015; 128 (2): 239-50.
Phosphorylation-dependent ubiquitination of paraxial protocadherin ( PAPC) controls gastrulation cell movements. , Kai M., PLoS One. January 12, 2015; 10 (1): e0115111.
Hedgehog activity controls opening of the primary mouth. , Tabler JM., Dev Biol. December 1, 2014; 396 (1): 1-7.
FoxA4 favours notochord formation by inhibiting contiguous mesodermal fates and restricts anterior neural development in Xenopus embryos. , Murgan S., PLoS One. October 2, 2014; 9 (10): e110559.
EphA4-dependent Brachyury expression is required for dorsal mesoderm involution in the Xenopus gastrula. , Evren S., Development. October 1, 2014; 141 (19): 3649-61.
The splicing factor PQBP1 regulates mesodermal and neural development through FGF signaling. , Iwasaki Y ., Development. October 1, 2014; 141 (19): 3740-51.
Tissue cohesion and the mechanics of cell rearrangement. , David R ., Development. October 1, 2014; 141 (19): 3672-82.
A conserved Oct4/POUV-dependent network links adhesion and migration to progenitor maintenance. , Livigni A., Curr Biol. November 18, 2013; 23 (22): 2233-2244.
The distribution of Dishevelled in convergently extending mesoderm. , Panousopoulou E., Dev Biol. October 15, 2013; 382 (2): 496-503.
Directional migration of leading-edge mesoderm generates physical forces: Implication in Xenopus notochord formation during gastrulation. , Hara Y., Dev Biol. October 15, 2013; 382 (2): 482-95.
Developmental mechanisms directing early anterior forebrain specification in vertebrates. , Andoniadou CL., Cell Mol Life Sci. October 1, 2013; 70 (20): 3739-52.
Coco regulates dorsoventral specification of germ layers via inhibition of TGFβ signalling. , Bates TJ., Development. October 1, 2013; 140 (20): 4177-81.
In vivo T-box transcription factor profiling reveals joint regulation of embryonic neuromesodermal bipotency. , Gentsch GE ., Cell Rep. September 26, 2013; 4 (6): 1185-96.
Different thresholds of Wnt- Frizzled 7 signaling coordinate proliferation, morphogenesis and fate of endoderm progenitor cells. , Zhang Z ., Dev Biol. June 1, 2013; 378 (1): 1-12.
An intact brachyury function is necessary to prevent spurious axial development in Xenopus laevis. , Aguirre CE., PLoS One. January 1, 2013; 8 (1): e54777.
Gastrulation and pre-gastrulation morphogenesis, inductions, and gene expression: similarities and dissimilarities between urodelean and anuran embryos. , Kaneda T., Dev Biol. September 1, 2012; 369 (1): 1-18.
Mutual repression between Gbx2 and Otx2 in sensory placodes reveals a general mechanism for ectodermal patterning. , Steventon B ., Dev Biol. July 1, 2012; 367 (1): 55-65.
Tiki1 is required for head formation via Wnt cleavage-oxidation and inactivation. , Zhang X., Cell. June 22, 2012; 149 (7): 1565-77.
Plasma membrane cholesterol depletion disrupts prechordal plate and affects early forebrain patterning. , Reis AH., Dev Biol. May 15, 2012; 365 (2): 350-62.
Dynamic in vivo binding of transcription factors to cis-regulatory modules of cer and gsc in the stepwise formation of the Spemann-Mangold organizer. , Sudou N ., Development. May 1, 2012; 139 (9): 1651-61.
Cadherin-dependent differential cell adhesion in Xenopus causes cell sorting in vitro but not in the embryo. , Ninomiya H., J Cell Sci. April 15, 2012; 125 (Pt 8): 1877-83.
Comparative expression analysis of the H3K27 demethylases, JMJD3 and UTX, with the H3K27 methylase, EZH2, in Xenopus. , Kawaguchi A., Int J Dev Biol. January 1, 2012; 56 (4): 295-300.
Cadherin function during Xenopus gastrulation. , Winklbauer R ., Subcell Biochem. January 1, 2012; 60 301-20.
Axial protocadherin ( AXPC) regulates cell fate during notochordal morphogenesis. , Yoder MD ., Dev Dyn. November 1, 2011; 240 (11): 2495-504.
An essential role for transcription before the MBT in Xenopus laevis. , Skirkanich J ., Dev Biol. September 15, 2011; 357 (2): 478-91.
Large-scale mechanical properties of Xenopus embryonic epithelium. , Luu O., Proc Natl Acad Sci U S A. March 8, 2011; 108 (10): 4000-5.
SNW1 is a critical regulator of spatial BMP activity, neural plate border formation, and neural crest specification in vertebrate embryos. , Wu MY., PLoS Biol. February 15, 2011; 9 (2): e1000593.