Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (6695) Expression Attributions Wiki
XB-ANAT-177

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Expression of microinjected hsp 70/CAT and hsp 30/CAT chimeric genes in developing Xenopus laevis embryos., Krone PH., Development. June 1, 1989; 106 (2): 271-81.


Increased levels of leukotriene C4 in retinal pigment epithelium are correlated with early events in photoreceptor shedding in Xenopus laevis., Birkle DL., Curr Eye Res. June 1, 1989; 8 (6): 557-61.


The development of retinal ganglion cells deprived of their targets., Sakaguchi DS., Dev Biol. July 1, 1989; 134 (1): 103-11.


Hyperdorsoanterior embryos from Xenopus eggs treated with D2O., Scharf SR., Dev Biol. July 1, 1989; 134 (1): 175-88.


Growth cone interactions with a glial cell line from embryonic Xenopus retina., Sakaguchi DS., Dev Biol. July 1, 1989; 134 (1): 158-74.                    


Expression of an engrailed-related protein is induced in the anterior neural ectoderm of early Xenopus embryos., Brivanlou AH., Development. July 1, 1989; 106 (3): 611-7.                  


Spatial and temporal expression of phosphorylated and non-phosphorylated forms of neurofilament proteins in the developing nervous system of Xenopus laevis., Szaro BG., Brain Res Dev Brain Res. July 1, 1989; 48 (1): 87-103.


Angiogenesis on the optic tectum of albino Xenopus laevis tadpoles., Rovainen CM., Brain Res Dev Brain Res. August 1, 1989; 48 (2): 197-213.


An epithelium-type cytoskeleton in a glial cell: astrocytes of amphibian optic nerves contain cytokeratin filaments and are connected by desmosomes., Rungger-Brändle E., J Cell Biol. August 1, 1989; 109 (2): 705-16.              


A single-cell analysis of early retinal ganglion cell differentiation in Xenopus: from soma to axon tip., Holt CE., J Neurosci. September 1, 1989; 9 (9): 3123-45.                                


Immunological studies on gamma crystallins from Xenopus: localization, tissue specificity and developmental expression of proteins., Shastry BS., Exp Eye Res. September 1, 1989; 49 (3): 361-9.      


The appearance of neural and glial cell markers during early development of the nervous system in the amphibian embryo., Messenger NJ., Development. September 1, 1989; 107 (1): 43-54.                      


Retino-retinal projections in three anuran species., Tóth P., Neurosci Lett. September 25, 1989; 104 (1-2): 43-7.


An aberrant retinal pathway and visual centers in Xenopus tadpoles share a common cell surface molecule, A5 antigen., Fujisawa H., Dev Biol. October 1, 1989; 135 (2): 231-40.                


Photoreceptor to horizontal cell synaptic transfer in the Xenopus retina: modulation by dopamine ligands and a circuit model for interactions of rod and cone inputs., Witkovsky P., J Neurophysiol. October 1, 1989; 62 (4): 864-81.


[Monoclonal antibodies to the muscle isoform of alpha-actinin--a marker for the study of the differentiation of skeletal and cardiac muscles]., Fridlianskaia II., Tsitologiia. October 1, 1989; 31 (10): 1234-7.


Interference with function of a homeobox gene in Xenopus embryos produces malformations of the anterior spinal cord., Wright CV., Cell. October 6, 1989; 59 (1): 81-93.              


Biplexiform ganglion cells in the retina of Xenopus laevis., Tóth P., Dev Biol. October 16, 1989; 499 (2): 378-82.


The appearance of acetylated alpha-tubulin during early development and cellular differentiation in Xenopus., Chu DT., Dev Biol. November 1, 1989; 136 (1): 104-17.                  


The development of the Xenopus retinofugal pathway: optic fibers join a pre-existing tract., Easter SS., Development. November 1, 1989; 107 (3): 553-73.


N-methyl-D-aspartate antagonists prevent interaction of binocular maps in Xenopus tectum., Scherer WJ., J Neurosci. November 1, 1989; 9 (11): 3837-43.


Ontogeny and tissue distribution of leukocyte-common antigen bearing cells during early development of Xenopus laevis., Ohinata H., Development. November 1, 1989; 107 (3): 445-52.              


Ontogenetic development of S-antigen- and rod-opsin immunoreactions in retinal and pineal photoreceptors of Xenopus laevis in relation to the onset of melatonin-dependent color-change mechanisms., Korf B., Cell Tissue Res. November 1, 1989; 258 (2): 319-29.


Retarded gastrulation and altered subsequent development of neural tissues in heparin-injected Xenopus embryos., Mitani S., Development. November 1, 1989; 107 (3): 423-35.


Subunit assembly and secretion of transthyretin: studies in a cell-free translation system and in microinjected Xenopus oocytes., Docherty K., J Mol Endocrinol. November 1, 1989; 3 (3): 191-7.


Cell lineage analysis reveals multipotent precursors in the ciliary margin of the frog retina., Wetts R., Dev Biol. November 1, 1989; 136 (1): 254-63.


Monoclonal antibody markers for amphibian oligodendrocytes and neurons., Steen P., J Comp Neurol. November 15, 1989; 289 (3): 467-80.


HIOMT-like immunoreactivity in the vertebrate retina: a species comparison., Wiechmann AF., Exp Eye Res. December 1, 1989; 49 (6): 1079-95.


Immunocytochemical reactivity of Xenopus laevis retinal rods and cones with several monoclonal antibodies to visual pigments., Röhlich P., J Comp Neurol. December 1, 1989; 290 (1): 105-17.


The morphological characterization and distribution of displaced ganglion cells in the anuran retina., Tóth P., Vis Neurosci. December 1, 1989; 3 (6): 551-61.


Embryonic lens induction: more than meets the optic vesicle., Saha MS., Cell Differ Dev. December 1, 1989; 28 (3): 153-71.


The course of regenerating retinal axons in the frog chiasma: the influence of axons from the other eye., Taylor JS., Anat Embryol (Berl). January 1, 1990; 181 (4): 405-12.


The induction of an anomalous ipsilateral retinotectal projection in Xenopus laevis., Taylor JS., Anat Embryol (Berl). January 1, 1990; 181 (4): 393-404.


Plasticity in the ipsilateral visuotectal projection persists after lesions of one nucleus isthmi in Xenopus., Udin SB., Exp Brain Res. January 1, 1990; 79 (2): 338-44.


Retinal detachment prevents normal assembly of disk membranes in vitro., Kaplan MW., Invest Ophthalmol Vis Sci. January 1, 1990; 31 (1): 1-8.


Cell surface molecule A5: a putative involvement in retinal central connection., Fujisawa H., Neurosci Res Suppl. January 1, 1990; 13 S11-7.


Segregation of fate during cleavage of frog (Xenopus laevis) blastomeres., Moody SA., Anat Embryol (Berl). January 1, 1990; 182 (4): 347-62.


Changes of egg retinoids during the development of Xenopus laevis., Azuma M., Vision Res. January 1, 1990; 30 (10): 1395-400.


Regeneration of optic fibres through the chiasma in Xenopus laevis tadpoles., Gaze RM., Anat Embryol (Berl). January 1, 1990; 182 (2): 181-94.


Competitive and positional cues in the patterning of nerve connections., Fraser SE., J Neurobiol. January 1, 1990; 21 (1): 51-72.


How does a nervous system produce behaviour? A case study in neurobiology., Roberts A., Sci Prog. January 1, 1990; 74 (293 Pt 1): 31-51.


The changing distribution of neurons in the inner nuclear layer from metamorphosis to adult: a morphometric analysis of the anuran retina., Zhu BS., Anat Embryol (Berl). January 1, 1990; 181 (6): 585-94.


Molecular approach to dorsoanterior development in Xenopus laevis., Sato SM., Dev Biol. January 1, 1990; 137 (1): 135-41.          


Circadian regulation of melatonin in the retina of Xenopus laevis: limitation by serotonin availability., Cahill GM., J Neurochem. February 1, 1990; 54 (2): 716-9.


Lipofection of cDNAs in the embryonic vertebrate central nervous system., Holt CE., Neuron. February 1, 1990; 4 (2): 203-14.


Differential keratin gene expression during the differentiation of the cement gland of Xenopus laevis., LaFlamme SE., Dev Biol. February 1, 1990; 137 (2): 414-8.        


The expression of phosphorylated and non-phosphorylated forms of MAP5 in the amphibian CNS., Viereck C., Dev Biol. February 5, 1990; 508 (2): 257-64.              


Ultrastructure of the crossed isthmotectal projection in Xenopus frogs., Udin SB., J Comp Neurol. February 8, 1990; 292 (2): 246-54.


Biochemical study of prolactin binding sites in Xenopus laevis brain and choroid plexus., Muccioli G., J Exp Zool. March 1, 1990; 253 (3): 311-8.


Retinal axons in Xenopus laevis recognise differences between tectal and diencephalic glial cells in vitro., Gooday DJ., Cell Tissue Res. March 1, 1990; 259 (3): 595-8.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ???pagination.result.next???