Results 1 - 20 of 20 results
Xenopus Ssbp2 is required for embryonic pronephros morphogenesis and terminal differentiation. , Cervino AS., Sci Rep. October 4, 2023; 13 (1): 16671.
Pou3f transcription factor expression during embryonic development highlights distinct pou3f3 and pou3f4 localization in the Xenopus laevis kidney. , Cosse-Etchepare C., Int J Dev Biol. January 1, 2018; 62 (4-5): 325-333.
Nephron Patterning: Lessons from Xenopus, Zebrafish, and Mouse Studies. , Desgrange A., Cells. September 11, 2015; 4 (3): 483-99.
Sterol carrier protein 2 regulates proximal tubule size in the Xenopus pronephric kidney by modulating lipid rafts. , Cerqueira DM., Dev Biol. October 1, 2014; 394 (1): 54-64.
The Wnt/ JNK signaling target gene alcam is required for embryonic kidney development. , Cizelsky W., Development. May 1, 2014; 141 (10): 2064-74.
Vertebrate kidney tubules elongate using a planar cell polarity-dependent, rosette-based mechanism of convergent extension. , Lienkamp SS ., Nat Genet. December 1, 2012; 44 (12): 1382-7.
Characterization of a novel Xenopus tropicalis cell line as a model for in vitro studies. , Sinzelle L., Genesis. March 1, 2012; 50 (3): 316-24.
Xenopus as a model system for the study of GOLPH2/ GP73 function: Xenopus GOLPH2 is required for pronephros development. , Li L., PLoS One. January 1, 2012; 7 (6): e38939.
Expression analysis of the peroxiredoxin gene family during early development in Xenopus laevis. , Shafer ME., Gene Expr Patterns. December 1, 2011; 11 (8): 511-6.
Zebrafish nephrogenesis involves dynamic spatiotemporal expression changes in renal progenitors and essential signals from retinoic acid and irx3b. , Wingert RA., Dev Dyn. August 1, 2011; 240 (8): 2011-27.
Wnt/beta-catenin signaling is involved in the induction and maintenance of primitive hematopoiesis in the vertebrate embryo. , Tran HT., Proc Natl Acad Sci U S A. September 14, 2010; 107 (37): 16160-5.
Normal levels of p27 are necessary for somite segmentation and determining pronephric organ size. , Naylor RW., Organogenesis. October 1, 2009; 5 (4): 201-10.
A functional screen for genes involved in Xenopus pronephros development. , Kyuno J ., Mech Dev. July 1, 2008; 125 (7): 571-86.
Organization of the pronephric kidney revealed by large-scale gene expression mapping. , Raciti D ., Genome Biol. January 1, 2008; 9 (5): R84.
The prepattern transcription factor Irx3 directs nephron segment identity. , Reggiani L., Genes Dev. September 15, 2007; 21 (18): 2358-70.
Xenopus Bicaudal-C is required for the differentiation of the amphibian pronephros. , Tran U ., Dev Biol. July 1, 2007; 307 (1): 152-64.
The Na+/PO4 cotransporter SLC20A1 gene labels distinct restricted subdomains of the developing pronephros in Xenopus and zebrafish embryos. , Nichane M., Gene Expr Patterns. October 1, 2006; 6 (7): 667-72.
The role of XTRAP-gamma in Xenopus pronephros development. , Li DH., Int J Dev Biol. January 1, 2005; 49 (4): 401-8.
Proximo- distal specialization of epithelial transport processes within the Xenopus pronephric kidney tubules. , Zhou X , Zhou X ., Dev Biol. July 15, 2004; 271 (2): 322-38.
Chromatin structure of Xenopus rDNA transcription termination sites. Evidence for a two-step process of transcription termination. , Trendelenburg MF., Chromosoma. January 1, 1982; 86 (5): 703-15.