Results 1 - 25 of 25 results
Normal Table of Xenopus development: a new graphical resource. , Zahn N ., Development. July 15, 2022; 149 (14):
Impact of glyphosate-based herbicide on early embryonic development of the amphibian Xenopus laevis. , Flach H., Aquat Toxicol. March 1, 2022; 244 106081.
In Xenopus ependymal cilia drive embryonic CSF circulation and brain development independently of cardiac pulsatile forces. , Dur AH., Fluids Barriers CNS. December 11, 2020; 17 (1): 72.
Gene expression of the two developmentally regulated dermatan sulfate epimerases in the Xenopus embryo. , Gouignard N ., PLoS One. January 18, 2018; 13 (1): e0191751.
Identification of new regulators of embryonic patterning and morphogenesis in Xenopus gastrulae by RNA sequencing. , Popov IK., Dev Biol. June 15, 2017; 426 (2): 429-441.
EphA7 modulates apical constriction of hindbrain neuroepithelium during neurulation in Xenopus. , Wang X ., Biochem Biophys Res Commun. October 28, 2016; 479 (4): 759-765.
G protein-coupled receptors Flop1 and Flop2 inhibit Wnt/ β-catenin signaling and are essential for head formation in Xenopus. , Miyagi A., Dev Biol. November 1, 2015; 407 (1): 131-44.
An essential role for LPA signalling in telencephalon development. , Geach TJ ., Development. February 1, 2014; 141 (4): 940-9.
sox4 and sox11 function during Xenopus laevis eye development. , Cizelsky W., PLoS One. July 1, 2013; 8 (7): e69372.
β-Adrenergic signaling promotes posteriorization in Xenopus early development. , Mori S., Dev Growth Differ. April 1, 2013; 55 (3): 350-8.
ATP4a is required for Wnt-dependent Foxj1 expression and leftward flow in Xenopus left- right development. , Walentek P ., Cell Rep. May 31, 2012; 1 (5): 516-27.
Neural crest migration requires the activity of the extracellular sulphatases XtSulf1 and XtSulf2. , Guiral EC., Dev Biol. May 15, 2010; 341 (2): 375-88.
The Pax3 and Pax7 paralogs cooperate in neural and neural crest patterning using distinct molecular mechanisms, in Xenopus laevis embryos. , Maczkowiak F., Dev Biol. April 15, 2010; 340 (2): 381-96.
Retinoid signalling is required for information transfer from mesoderm to neuroectoderm during gastrulation. , Lloret-Vilaspasa F., Int J Dev Biol. January 1, 2010; 54 (4): 599-608.
In vitro organogenesis from undifferentiated cells in Xenopus. , Asashima M ., Dev Dyn. June 1, 2009; 238 (6): 1309-20.
Novel gene ashwin functions in Xenopus cell survival and anteroposterior patterning. , Patil SS., Dev Dyn. July 1, 2006; 235 (7): 1895-907.
Neural induction in Xenopus: requirement for ectodermal and endomesodermal signals via Chordin, Noggin, beta-Catenin, and Cerberus. , Kuroda H ., PLoS Biol. May 1, 2004; 2 (5): E92.
Xenopus X-box binding protein 1, a leucine zipper transcription factor, is involved in the BMP signaling pathway. , Zhao H ., Dev Biol. May 15, 2003; 257 (2): 278-91.
Xolloid-related: a novel BMP1/Tolloid-related metalloprotease is expressed during early Xenopus development. , Dale L ., Mech Dev. December 1, 2002; 119 (2): 177-90.
Smad10 is required for formation of the frog nervous system. , LeSueur JA., Dev Cell. June 1, 2002; 2 (6): 771-83.
Designation of the anterior/ posterior axis in pregastrula Xenopus laevis. , Lane MC ., Dev Biol. September 1, 2000; 225 (1): 37-58.
The maternal Xenopus beta-catenin signaling pathway, activated by frizzled homologs, induces goosecoid in a cell non-autonomous manner. , Brown JD ., Dev Growth Differ. August 1, 2000; 42 (4): 347-57.
The Xenopus homologue of the Drosophila gene tailless has a function in early eye development. , Hollemann T ., Development. July 1, 1998; 125 (13): 2425-32.
Xenopus Smad7 inhibits both the activin and BMP pathways and acts as a neural inducer. , Casellas R., Dev Biol. June 1, 1998; 198 (1): 1-12.
Xwnt-2b is a novel axis-inducing Xenopus Wnt, which is expressed in embryonic brain. , Landesman Y., Mech Dev. May 1, 1997; 63 (2): 199-209.