Results 1 - 36 of 36 results
Symmetry breakage in the frog Xenopus: role of Rab11 and the ventral- right blastomere. , Tingler M., Genesis. June 1, 2014; 52 (6): 588-99.
sfrp1 promotes cardiomyocyte differentiation in Xenopus via negative-feedback regulation of Wnt signalling. , Gibb N ., Development. April 1, 2013; 140 (7): 1537-49.
Serotonin has early, cilia-independent roles in Xenopus left- right patterning. , Vandenberg LN ., Dis Model Mech. January 1, 2013; 6 (1): 261-8.
Rab GTPases are required for early orientation of the left- right axis in Xenopus. , Vandenberg LN ., Mech Dev. January 1, 2013; 130 (4-5): 254-71.
Prolonged FGF signaling is necessary for lung and liver induction in Xenopus. , Shifley ET ., BMC Dev Biol. September 18, 2012; 12 27.
Hyaluronan is required for cranial neural crest cells migration and craniofacial development. , Casini P., Dev Dyn. February 1, 2012; 241 (2): 294-302.
Bmp indicator mice reveal dynamic regulation of transcriptional response. , Javier AL., PLoS One. January 1, 2012; 7 (9): e42566.
EBF proteins participate in transcriptional regulation of Xenopus muscle development. , Green YS., Dev Biol. October 1, 2011; 358 (1): 240-50.
Transmembrane potential of GlyCl-expressing instructor cells induces a neoplastic-like conversion of melanocytes via a serotonergic pathway. , Blackiston D ., Dis Model Mech. January 1, 2011; 4 (1): 67-85.
Gadd45a and Gadd45g regulate neural development and exit from pluripotency in Xenopus. , Kaufmann LT., Mech Dev. January 1, 2011; 128 (7-10): 401-11.
Microarray identification of novel downstream targets of FoxD4L1/D5, a critical component of the neural ectodermal transcriptional network. , Yan B., Dev Dyn. December 1, 2010; 239 (12): 3467-80.
Wnt/beta-catenin signaling is involved in the induction and maintenance of primitive hematopoiesis in the vertebrate embryo. , Tran HT., Proc Natl Acad Sci U S A. September 14, 2010; 107 (37): 16160-5.
Serotonin 2B receptor signaling is required for craniofacial morphogenesis and jaw joint formation in Xenopus. , Reisoli E., Development. September 1, 2010; 137 (17): 2927-37.
Regulation of vertebrate embryogenesis by the exon junction complex core component Eif4a3. , Haremaki T ., Dev Dyn. July 1, 2010; 239 (7): 1977-87.
BCL6 canalizes Notch-dependent transcription, excluding Mastermind-like1 from selected target genes during left- right patterning. , Sakano D., Dev Cell. March 16, 2010; 18 (3): 450-62.
Neural ectoderm-secreted FGF initiates the expression of Nkx2.5 in cardiac progenitors via a p38 MAPK/ CREB pathway. , Keren-Politansky A., Dev Biol. November 15, 2009; 335 (2): 374-84.
Functional characterization of two CITED3 homologs (gcCITED3a and gcCITED3b) in the hypoxia-tolerant grass carp, Ctenopharyngodon idellus. , Ng PK., BMC Mol Biol. November 3, 2009; 10 101.
Normal levels of p27 are necessary for somite segmentation and determining pronephric organ size. , Naylor RW., Organogenesis. October 1, 2009; 5 (4): 201-10.
Coordinating the timing of cardiac precursor development during gastrulation: a new role for Notch signaling. , Miazga CM., Dev Biol. September 15, 2009; 333 (2): 285-96.
The Xenopus Bowline/Ripply family proteins negatively regulate the transcriptional activity of T-box transcription factors. , Hitachi K ., Int J Dev Biol. January 1, 2009; 53 (4): 631-9.
Left-asymmetric expression of Galanin in the linear heart tube of the mouse embryo is independent of the nodal co-receptor gene cryptic. , Schweickert A ., Dev Dyn. December 1, 2008; 237 (12): 3557-64.
Pleiotropic effects in Eya3 knockout mice. , Söker T., BMC Dev Biol. June 23, 2008; 8 118.
A role of D domain-related proteins in differentiation and migration of embryonic cells in Xenopus laevis. , Shibata T., Mech Dev. January 1, 2008; 125 (3-4): 284-98.
Evi1 is specifically expressed in the distal tubule and duct of the Xenopus pronephros and plays a role in its formation. , Van Campenhout C., Dev Biol. June 1, 2006; 294 (1): 203-19.
XHas2 activity is required during somitogenesis and precursor cell migration in Xenopus development. , Ori M ., Development. February 1, 2006; 133 (4): 631-40.
Identification of target genes for the Xenopus Hes-related protein XHR1, a prepattern factor specifying the midbrain- hindbrain boundary. , Takada H., Dev Biol. July 1, 2005; 283 (1): 253-67.
Dlx proteins position the neural plate border and determine adjacent cell fates. , Woda JM., Development. January 1, 2003; 130 (2): 331-42.
Adult and embryonic blood and endothelium derive from distinct precursor populations which are differentially programmed by BMP in Xenopus. , Walmsley M., Development. December 1, 2002; 129 (24): 5683-95.
Smad10 is required for formation of the frog nervous system. , LeSueur JA., Dev Cell. June 1, 2002; 2 (6): 771-83.
Hes6 regulates myogenic differentiation. , Cossins J., Development. May 1, 2002; 129 (9): 2195-207.
Transcription factors of the anterior neural plate alter cell movements of epidermal progenitors to specify a retinal fate. , Kenyon KL ., Dev Biol. December 1, 2001; 240 (1): 77-91.
Embryonic expression of an Nkx2-5/Cre gene using ROSA26 reporter mice. , Moses KA., Genesis. December 1, 2001; 31 (4): 176-80.
Isolation and characterization of a Xenopus gene ( XMLP) encoding a MARCKS-like protein. , Zhao H ., Int J Dev Biol. October 1, 2001; 45 (7): 817-26.
Distinct origins of adult and embryonic blood in Xenopus. , Ciau-Uitz A ., Cell. September 15, 2000; 102 (6): 787-96.
The cardiac homeobox gene Csx/ Nkx2.5 lies genetically upstream of multiple genes essential for heart development. , Tanaka M., Development. March 1, 1999; 126 (6): 1269-80.
The KH domain protein encoded by quaking functions as a dimer and is essential for notochord development in Xenopus embryos. , Zorn AM ., Genes Dev. September 1, 1997; 11 (17): 2176-90.