Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (2463) Expression Attributions Wiki
XB-ANAT-63

Papers associated with heart (and snai2)

Limit to papers also referencing gene:
Show all heart papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Deletion of sf3b4 causes splicing defects and gene dysregulation that disrupt craniofacial development and survival., Griffin C., Dis Model Mech. March 1, 2025; 18 (3):   


Phenotype-genotype relationships in Xenopus sox9 crispants provide insights into campomelic dysplasia and vertebrate jaw evolution., Hossain N., Dev Growth Differ. October 1, 2023; 65 (8): 481-497.   


Npr3 regulates neural crest and cranial placode progenitors formation through its dual function as clearance and signaling receptor., Devotta A., Elife. May 10, 2023; 12   


Disrupted ER membrane protein complex-mediated topogenesis drives congenital neural crest defects., Marquez J., J Clin Invest. February 3, 2020; 130 (2): 813-826.   


Gene expression of the two developmentally regulated dermatan sulfate epimerases in the Xenopus embryo., Gouignard N., PLoS One. January 18, 2018; 13 (1): e0191751.   


Genes regulated by potassium channel tetramerization domain containing 15 (Kctd15) in the developing neural crest., Wong TC., Int J Dev Biol. January 1, 2016; 60 (4-6): 159-66.   


G protein-coupled receptors Flop1 and Flop2 inhibit Wnt/β-catenin signaling and are essential for head formation in Xenopus., Miyagi A., Dev Biol. November 1, 2015; 407 (1): 131-44.   


Xenopus Pkdcc1 and Pkdcc2 Are Two New Tyrosine Kinases Involved in the Regulation of JNK Dependent Wnt/PCP Signaling Pathway., Vitorino M., PLoS One. August 13, 2015; 10 (8): e0135504.   


The ribosome biogenesis factor Nol11 is required for optimal rDNA transcription and craniofacial development in Xenopus., Griffin JN., PLoS Genet. March 10, 2015; 11 (3): e1005018.   


5-Mehtyltetrahydrofolate rescues alcohol-induced neural crest cell migration abnormalities., Shi Y., Mol Brain. September 16, 2014; 7 67.   


The extreme anterior domain is an essential craniofacial organizer acting through Kinin-Kallikrein signaling., Jacox L., Cell Rep. July 24, 2014; 8 (2): 596-609.   


An essential role for LPA signalling in telencephalon development., Geach TJ., Development. February 1, 2014; 141 (4): 940-9.   


Left-right patterning in Xenopus conjoined twin embryos requires serotonin signaling and gap junctions., Vandenberg LN., Int J Dev Biol. January 1, 2014; 58 (10-12): 799-809.   


Calponin 2 acts as an effector of noncanonical Wnt-mediated cell polarization during neural crest cell migration., Ulmer B., Cell Rep. March 28, 2013; 3 (3): 615-21.   


Regulation of primitive hematopoiesis by class I histone deacetylases., Shah RR., Dev Dyn. February 1, 2013; 242 (2): 108-21.   


Myogenic waves and myogenic programs during Xenopus embryonic myogenesis., Della Gaspera B., Dev Dyn. May 1, 2012; 241 (5): 995-1007.   


Hyaluronan is required for cranial neural crest cells migration and craniofacial development., Casini P., Dev Dyn. February 1, 2012; 241 (2): 294-302.   


Williams Syndrome Transcription Factor is critical for neural crest cell function in Xenopus laevis., Barnett C., Mech Dev. January 1, 2012; 129 (9-12): 324-38.   


Xenopus reduced folate carrier regulates neural crest development epigenetically., Li J., PLoS One. January 1, 2011; 6 (11): e27198.   


Serotonin 2B receptor signaling is required for craniofacial morphogenesis and jaw joint formation in Xenopus., Reisoli E., Development. September 1, 2010; 137 (17): 2927-37.   


Neural crest migration requires the activity of the extracellular sulphatases XtSulf1 and XtSulf2., Guiral EC., Dev Biol. May 15, 2010; 341 (2): 375-88.   


The Pax3 and Pax7 paralogs cooperate in neural and neural crest patterning using distinct molecular mechanisms, in Xenopus laevis embryos., Maczkowiak F., Dev Biol. April 15, 2010; 340 (2): 381-96.   


Systematic discovery of nonobvious human disease models through orthologous phenotypes., McGary KL., Proc Natl Acad Sci U S A. April 6, 2010; 107 (14): 6544-9.   


CHD7 cooperates with PBAF to control multipotent neural crest formation., Bajpai R., Nature. February 18, 2010; 463 (7283): 958-62.   


Xenopus Meis3 protein lies at a nexus downstream to Zic1 and Pax3 proteins, regulating multiple cell-fates during early nervous system development., Gutkovich YE., Dev Biol. February 1, 2010; 338 (1): 50-62.   


Diversification of the expression patterns and developmental functions of the dishevelled gene family during chordate evolution., Gray RS., Dev Dyn. August 1, 2009; 238 (8): 2044-57.   


A Myc-Slug (Snail2)/Twist regulatory circuit directs vascular development., Rodrigues CO., Development. June 1, 2008; 135 (11): 1903-11.   


A role of D domain-related proteins in differentiation and migration of embryonic cells in Xenopus laevis., Shibata T., Mech Dev. January 1, 2008; 125 (3-4): 284-98.   


Evi1 is specifically expressed in the distal tubule and duct of the Xenopus pronephros and plays a role in its formation., Van Campenhout C., Dev Biol. June 1, 2006; 294 (1): 203-19.   


A vertebrate crossveinless 2 homologue modulates BMP activity and neural crest cell migration., Coles E., Development. November 1, 2004; 131 (21): 5309-17.   


Cardiac neural crest ablation alters Id2 gene expression in the developing heart., Martinsen BJ., Dev Biol. August 1, 2004; 272 (1): 176-90.   


Connective-tissue growth factor modulates WNT signalling and interacts with the WNT receptor complex., Mercurio S., Development. May 1, 2004; 131 (9): 2137-47.   


Dlx proteins position the neural plate border and determine adjacent cell fates., Woda JM., Development. January 1, 2003; 130 (2): 331-42.   


The maternal Xenopus beta-catenin signaling pathway, activated by frizzled homologs, induces goosecoid in a cell non-autonomous manner., Brown JD., Dev Growth Differ. August 1, 2000; 42 (4): 347-57.   


Genomic organization, expression, and chromosome location of the human SNAIL gene (SNAI1) and a related processed pseudogene (SNAI1P)., Paznekas WA., Genomics. November 15, 1999; 62 (1): 42-9.


Human SLUG gene organization, expression, and chromosome map location on 8q., Cohen ME., Genomics. August 1, 1998; 51 (3): 468-71.


Xenopus Smad7 inhibits both the activin and BMP pathways and acts as a neural inducer., Casellas R., Dev Biol. June 1, 1998; 198 (1): 1-12.   

???pagination.result.page??? 1