Results 1 - 46 of 46 results
Interplay of TRIM2 E3 Ubiquitin Ligase and ALIX/ESCRT Complex: Control of Developmental Plasticity During Early Neurogenesis. , Lokapally A., Cells. July 20, 2020; 9 (7):
HCN2 Channel-Induced Rescue of Brain Teratogenesis via Local and Long-Range Bioelectric Repair. , Pai VP ., Front Cell Neurosci. May 26, 2020; 14 136.
Leukemia inhibitory factor signaling in Xenopus embryo: Insights from gain of function analysis and dominant negative mutant of the receptor. , Jalvy S., Dev Biol. March 15, 2019; 447 (2): 200-213.
WDR5 regulates left- right patterning via chromatin-dependent and -independent functions. , Kulkarni SS ., Development. November 28, 2018; 145 (23):
RAPGEF5 Regulates Nuclear Translocation of β-Catenin. , Griffin JN., Dev Cell. January 22, 2018; 44 (2): 248-260.e4.
Maternal Gdf3 is an obligatory cofactor in Nodal signaling for embryonic axis formation in zebrafish. , Bisgrove BW., Elife. November 15, 2017; 6
A Nonredundant Role for the TRPM6 Channel in Neural Tube Closure. , Komiya Y., Sci Rep. November 15, 2017; 7 (1): 15623.
Identification of new regulators of embryonic patterning and morphogenesis in Xenopus gastrulae by RNA sequencing. , Popov IK., Dev Biol. June 15, 2017; 426 (2): 429-441.
Coordinating heart morphogenesis: A novel role for hyperpolarization-activated cyclic nucleotide-gated (HCN) channels during cardiogenesis in Xenopus laevis. , Pitcairn E., Commun Integr Biol. May 10, 2017; 10 (3): e1309488.
FoxD1 protein interacts with Wnt and BMP signaling to differentially pattern mesoderm and neural tissue. , Polevoy H., Int J Dev Biol. January 1, 2017; 61 (3-4-5): 293-302.
G protein-coupled receptors Flop1 and Flop2 inhibit Wnt/ β-catenin signaling and are essential for head formation in Xenopus. , Miyagi A., Dev Biol. November 1, 2015; 407 (1): 131-44.
Xenopus Pkdcc1 and Pkdcc2 Are Two New Tyrosine Kinases Involved in the Regulation of JNK Dependent Wnt/PCP Signaling Pathway. , Vitorino M., PLoS One. August 13, 2015; 10 (8): e0135504.
E2a is necessary for Smad2/3-dependent transcription and the direct repression of lefty during gastrulation. , Wills AE ., Dev Cell. February 9, 2015; 32 (3): 345-57.
Temporal and spatial expression analysis of peripheral myelin protein 22 ( Pmp22) in developing Xenopus. , Tae HJ., Gene Expr Patterns. January 1, 2015; 17 (1): 26-30.
An essential role for LPA signalling in telencephalon development. , Geach TJ ., Development. February 1, 2014; 141 (4): 940-9.
sox4 and sox11 function during Xenopus laevis eye development. , Cizelsky W., PLoS One. July 1, 2013; 8 (7): e69372.
Regulation of primitive hematopoiesis by class I histone deacetylases. , Shah RR., Dev Dyn. February 1, 2013; 242 (2): 108-21.
A developmental requirement for HIRA-dependent H3.3 deposition revealed at gastrulation in Xenopus. , Szenker E., Cell Rep. June 28, 2012; 1 (6): 730-40.
Regulation of retinal homeobox gene transcription by cooperative activity among cis-elements. , Martinez-de Luna RI ., Gene. November 1, 2010; 467 (1-2): 13-24.
Neural crest migration requires the activity of the extracellular sulphatases XtSulf1 and XtSulf2. , Guiral EC., Dev Biol. May 15, 2010; 341 (2): 375-88.
The Pax3 and Pax7 paralogs cooperate in neural and neural crest patterning using distinct molecular mechanisms, in Xenopus laevis embryos. , Maczkowiak F., Dev Biol. April 15, 2010; 340 (2): 381-96.
FoxO genes are dispensable during gastrulation but required for late embryogenesis in Xenopus laevis. , Schuff M., Dev Biol. January 15, 2010; 337 (2): 259-73.
Neural ectoderm-secreted FGF initiates the expression of Nkx2.5 in cardiac progenitors via a p38 MAPK/ CREB pathway. , Keren-Politansky A., Dev Biol. November 15, 2009; 335 (2): 374-84.
In vitro organogenesis from undifferentiated cells in Xenopus. , Asashima M ., Dev Dyn. June 1, 2009; 238 (6): 1309-20.
Modulation of the beta-catenin signaling pathway by the dishevelled-associated protein Hipk1. , Louie SH., PLoS One. January 1, 2009; 4 (2): e4310.
Extracellular regulation of developmental cell signaling by XtSulf1. , Freeman SD., Dev Biol. August 15, 2008; 320 (2): 436-45.
Expression of Siamois and Twin in the blastula Chordin/ Noggin signaling center is required for brain formation in Xenopus laevis embryos. , Ishibashi H., Mech Dev. January 1, 2008; 125 (1-2): 58-66.
Characterization of myeloid cells derived from the anterior ventral mesoderm in the Xenopus laevis embryo. , Tashiro S., Dev Growth Differ. October 1, 2006; 48 (8): 499-512.
Novel gene ashwin functions in Xenopus cell survival and anteroposterior patterning. , Patil SS., Dev Dyn. July 1, 2006; 235 (7): 1895-907.
Genomic profiling of mixer and Sox17beta targets during Xenopus endoderm development. , Dickinson K., Dev Dyn. February 1, 2006; 235 (2): 368-81.
DRAGON, a bone morphogenetic protein co-receptor. , Samad TA., J Biol Chem. April 8, 2005; 280 (14): 14122-9.
Neural induction in Xenopus: requirement for ectodermal and endomesodermal signals via Chordin, Noggin, beta-Catenin, and Cerberus. , Kuroda H ., PLoS Biol. May 1, 2004; 2 (5): E92.
Connective- tissue growth factor modulates WNT signalling and interacts with the WNT receptor complex. , Mercurio S., Development. May 1, 2004; 131 (9): 2137-47.
Coordination of BMP-3b and cerberus is required for head formation of Xenopus embryos. , Hino J ., Dev Biol. August 1, 2003; 260 (1): 138-57.
Xenopus X-box binding protein 1, a leucine zipper transcription factor, is involved in the BMP signaling pathway. , Zhao H ., Dev Biol. May 15, 2003; 257 (2): 278-91.
Redundant early and overlapping larval roles of Xsox17 subgroup genes in Xenopus endoderm development. , Clements D., Mech Dev. March 1, 2003; 120 (3): 337-48.
Xolloid-related: a novel BMP1/Tolloid-related metalloprotease is expressed during early Xenopus development. , Dale L ., Mech Dev. December 1, 2002; 119 (2): 177-90.
The latent- TGFbeta-binding-protein-1 (LTBP-1) is expressed in the organizer and regulates nodal and activin signaling. , Altmann CR ., Dev Biol. August 1, 2002; 248 (1): 118-27.
Smad10 is required for formation of the frog nervous system. , LeSueur JA., Dev Cell. June 1, 2002; 2 (6): 771-83.
Transcription factors of the anterior neural plate alter cell movements of epidermal progenitors to specify a retinal fate. , Kenyon KL ., Dev Biol. December 1, 2001; 240 (1): 77-91.
XCL-2 is a novel m-type calpain and disrupts morphogenetic movements during embryogenesis in Xenopus laevis. , Cao Y ., Dev Growth Differ. October 1, 2001; 43 (5): 563-71.
Designation of the anterior/ posterior axis in pregastrula Xenopus laevis. , Lane MC ., Dev Biol. September 1, 2000; 225 (1): 37-58.
The maternal Xenopus beta-catenin signaling pathway, activated by frizzled homologs, induces goosecoid in a cell non-autonomous manner. , Brown JD ., Dev Growth Differ. August 1, 2000; 42 (4): 347-57.
Xenopus Smad7 inhibits both the activin and BMP pathways and acts as a neural inducer. , Casellas R., Dev Biol. June 1, 1998; 198 (1): 1-12.
Murine cerberus homologue mCer-1: a candidate anterior patterning molecule. , Biben C., Dev Biol. February 15, 1998; 194 (2): 135-51.
Disruption of BMP signals in embryonic Xenopus ectoderm leads to direct neural induction. , Hawley SH., Genes Dev. December 1, 1995; 9 (23): 2923-35.