Results 1 - 50 of 91 results
GJA1 depletion causes ciliary defects by affecting Rab11 trafficking to the ciliary base. , Jang DG., Elife. August 25, 2022; 11
Altering metabolite distribution at Xenopus cleavage stages affects left- right gene expression asymmetries. , Onjiko RM., Genesis. June 1, 2021; 59 (5-6): e23418.
Histone H2B monoubiquitination regulates heart development via epigenetic control of cilia motility. , Robson A., Proc Natl Acad Sci U S A. July 9, 2019; 116 (28): 14049-14054.
A Conserved Role of the Unconventional Myosin 1d in Laterality Determination. , Tingler M., Curr Biol. March 5, 2018; 28 (5): 810-816.e3.
RAPGEF5 Regulates Nuclear Translocation of β-Catenin. , Griffin JN., Dev Cell. January 22, 2018; 44 (2): 248-260.e4.
Maternal Gdf3 is an obligatory cofactor in Nodal signaling for embryonic axis formation in zebrafish. , Bisgrove BW., Elife. November 15, 2017; 6
HCN4 ion channel function is required for early events that regulate anatomical left- right patterning in a nodal and lefty asymmetric gene expression-independent manner. , Pai VP ., Biol Open. October 15, 2017; 6 (10): 1445-1457.
Id genes are essential for early heart formation. , Cunningham TJ., Genes Dev. July 1, 2017; 31 (13): 1325-1338.
Coordinating heart morphogenesis: A novel role for hyperpolarization-activated cyclic nucleotide-gated (HCN) channels during cardiogenesis in Xenopus laevis. , Pitcairn E., Commun Integr Biol. May 10, 2017; 10 (3): e1309488.
Leftward Flow Determines Laterality in Conjoined Twins. , Tisler M., Curr Biol. February 20, 2017; 27 (4): 543-548.
Xenopus, an ideal model organism to study laterality in conjoined twins. , Tisler M., Genesis. January 1, 2017; 55 (1-2):
Nodal signalling in Xenopus: the role of Xnr5 in left/ right asymmetry and heart development. , Tadjuidje E ., Open Biol. August 1, 2016; 6 (8):
Splicing misregulation of SCN5A contributes to cardiac-conduction delay and heart arrhythmia in myotonic dystrophy. , Freyermuth F., Nat Commun. April 11, 2016; 7 11067.
Conserved roles for cytoskeletal components in determining laterality. , McDowell GS ., Integr Biol (Camb). March 14, 2016; 8 (3): 267-86.
Formin Is Associated with Left- Right Asymmetry in the Pond Snail and the Frog. , Davison A., Curr Biol. March 7, 2016; 26 (5): 654-60.
Xenopus as a model organism for birth defects-Congenital heart disease and heterotaxy. , Duncan AR., Semin Cell Dev Biol. March 1, 2016; 51 73-9.
The NIMA-like kinase Nek2 is a key switch balancing cilia biogenesis and resorption in the development of left- right asymmetry. , Endicott SJ., Development. December 1, 2015; 142 (23): 4068-79.
Kruppel-like factor family genes are expressed during Xenopus embryogenesis and involved in germ layer formation and body axis patterning. , Gao Y., Dev Dyn. October 1, 2015; 244 (10): 1328-46.
Direct nkx2-5 transcriptional repression of isl1 controls cardiomyocyte subtype identity. , Dorn T., Stem Cells. April 1, 2015; 33 (4): 1113-29.
E2a is necessary for Smad2/3-dependent transcription and the direct repression of lefty during gastrulation. , Wills AE ., Dev Cell. February 9, 2015; 32 (3): 345-57.
Global identification of Smad2 and Eomesodermin targets in zebrafish identifies a conserved transcriptional network in mesendoderm and a novel role for Eomesodermin in repression of ectodermal gene expression. , Nelson AC., BMC Biol. October 3, 2014; 12 81.
Cardiac arrhythmia induced by genetic silencing of ''funny'' (f) channels is rescued by GIRK4 inactivation. , Mesirca P., Nat Commun. August 21, 2014; 5 4664.
Symmetry breakage in the frog Xenopus: role of Rab11 and the ventral- right blastomere. , Tingler M., Genesis. June 1, 2014; 52 (6): 588-99.
Hhex and Cer1 mediate the Sox17 pathway for cardiac mesoderm formation in embryonic stem cells. , Liu Y ., Stem Cells. June 1, 2014; 32 (6): 1515-26.
The evolution and conservation of left- right patterning mechanisms. , Blum M ., Development. April 1, 2014; 141 (8): 1603-13.
Left- right patterning in Xenopus conjoined twin embryos requires serotonin signaling and gap junctions. , Vandenberg LN ., Int J Dev Biol. January 1, 2014; 58 (10-12): 799-809.
Left- right asymmetry: lessons from Cancún. , Burdine RD., Development. November 1, 2013; 140 (22): 4465-70.
It''s never too early to get it Right: A conserved role for the cytoskeleton in left- right asymmetry. , Vandenberg LN ., Commun Integr Biol. November 1, 2013; 6 (6): e27155.
Dvr1 transfers left- right asymmetric signals from Kupffer''s vesicle to lateral plate mesoderm in zebrafish. , Peterson AG., Dev Biol. October 1, 2013; 382 (1): 198-208.
Rab GTPases are required for early orientation of the left- right axis in Xenopus. , Vandenberg LN ., Mech Dev. January 1, 2013; 130 (4-5): 254-71.
ATP4a is required for Wnt-dependent Foxj1 expression and leftward flow in Xenopus left- right development. , Walentek P ., Cell Rep. May 31, 2012; 1 (5): 516-27.
Connexin26-mediated transfer of laterality cues in Xenopus. , Beyer T., Biol Open. May 15, 2012; 1 (5): 473-81.
Linking early determinants and cilia-driven leftward flow in left- right axis specification of Xenopus laevis: a theoretical approach. , Schweickert A ., Differentiation. February 1, 2012; 83 (2): S67-77.
Neurally Derived Tissues in Xenopus laevis Embryos Exhibit a Consistent Bioelectrical Left- Right Asymmetry. , Pai VP ., Stem Cells Int. January 1, 2012; 2012 353491.
Histone deacetylase activity is necessary for left- right patterning during vertebrate development. , Carneiro K., BMC Dev Biol. May 20, 2011; 11 29.
APOBEC2, a selective inhibitor of TGFβ signaling, regulates left- right axis specification during early embryogenesis. , Vonica A ., Dev Biol. February 1, 2011; 350 (1): 13-23.
The ATP-sensitive K(+)-channel (K(ATP)) controls early left- right patterning in Xenopus and chick embryos. , Aw S., Dev Biol. October 1, 2010; 346 (1): 39-53.
Wnt/beta-catenin signaling is involved in the induction and maintenance of primitive hematopoiesis in the vertebrate embryo. , Tran HT., Proc Natl Acad Sci U S A. September 14, 2010; 107 (37): 16160-5.
Early activation of FGF and nodal pathways mediates cardiac specification independently of Wnt/beta-catenin signaling. , Samuel LJ., PLoS One. October 28, 2009; 4 (10): e7650.
Lef1 plays a role in patterning the mesoderm and ectoderm in Xenopus tropicalis. , Roel G., Int J Dev Biol. January 1, 2009; 53 (1): 81-9.
Left-asymmetric expression of Galanin in the linear heart tube of the mouse embryo is independent of the nodal co-receptor gene cryptic. , Schweickert A ., Dev Dyn. December 1, 2008; 237 (12): 3557-64.
Expression of Siamois and Twin in the blastula Chordin/ Noggin signaling center is required for brain formation in Xenopus laevis embryos. , Ishibashi H., Mech Dev. January 1, 2008; 125 (1-2): 58-66.
Cilia multifunctional organelles at the center of vertebrate left- right asymmetry. , Basu B., Curr Top Dev Biol. January 1, 2008; 85 151-74.
Two T-box genes play independent and cooperative roles to regulate morphogenesis of ciliated Kupffer's vesicle in zebrafish. , Amack JD., Dev Biol. October 15, 2007; 310 (2): 196-210.
Multiple functions of Cerberus cooperate to induce heart downstream of Nodal. , Foley AC ., Dev Biol. March 1, 2007; 303 (1): 57-65.
Cilia-driven leftward flow determines laterality in Xenopus. , Schweickert A ., Curr Biol. January 9, 2007; 17 (1): 60-6.
Subtilisin-like proprotein convertase activity is necessary for left- right axis determination in Xenopus neurula embryos. , Toyoizumi R., Dev Genes Evol. October 1, 2006; 216 (10): 607-22.
Embryonic heart induction. , Foley AC ., Ann N Y Acad Sci. October 1, 2006; 1080 85-96.
Heart defects in X-linked heterotaxy: evidence for a genetic interaction of Zic3 with the nodal signaling pathway. , Ware SM ., Dev Dyn. June 1, 2006; 235 (6): 1631-7.
Early, H+-V-ATPase-dependent proton flux is necessary for consistent left- right patterning of non-mammalian vertebrates. , Adams DS ., Development. May 1, 2006; 133 (9): 1657-71.