Results 1 - 23 of 23 results
Maternal Gdf3 is an obligatory cofactor in Nodal signaling for embryonic axis formation in zebrafish. , Bisgrove BW., Elife. November 15, 2017; 6
Nodal signalling in Xenopus: the role of Xnr5 in left/ right asymmetry and heart development. , Tadjuidje E ., Open Biol. August 1, 2016; 6 (8):
Novel animal pole-enriched maternal mRNAs are preferentially expressed in neural ectoderm. , Grant PA ., Dev Dyn. March 1, 2014; 243 (3): 478-96.
Dvr1 transfers left- right asymmetric signals from Kupffer''s vesicle to lateral plate mesoderm in zebrafish. , Peterson AG., Dev Biol. October 1, 2013; 382 (1): 198-208.
APOBEC2, a selective inhibitor of TGFβ signaling, regulates left- right axis specification during early embryogenesis. , Vonica A ., Dev Biol. February 1, 2011; 350 (1): 13-23.
The shroom family proteins play broad roles in the morphogenesis of thickened epithelial sheets. , Lee C , Lee C , Lee C ., Dev Dyn. June 1, 2009; 238 (6): 1480-91.
XCR2, one of three Xenopus EGF- CFC genes, has a distinct role in the regulation of left- right patterning. , Onuma Y ., Development. January 1, 2006; 133 (2): 237-50.
ALK4 functions as a receptor for multiple TGF beta-related ligands to regulate left- right axis determination and mesoderm induction in Xenopus. , Chen Y ., Dev Biol. April 15, 2004; 268 (2): 280-94.
Ectodermal syndecan-2 mediates left- right axis formation in migrating mesoderm as a cell-nonautonomous Vg1 cofactor. , Kramer KL., Dev Cell. January 1, 2002; 2 (1): 115-24.
Smoothened mutants reveal redundant roles for Shh and Ihh signaling including regulation of L/R symmetry by the mouse node. , Zhang XM., Cell. July 27, 2001; 106 (2): 781-92.
Smoothened mutants reveal redundant roles for Shh and Ihh signaling including regulation of L/R asymmetry by the mouse node. , Zhang XM., Cell. June 15, 2001; 105 (6): 781-92.
Overexpression of the Xenopus tight-junction protein claudin causes randomization of the left- right body axis. , Brizuela BJ., Dev Biol. February 15, 2001; 230 (2): 217-29.
Mesendoderm induction and reversal of left- right pattern by mouse Gdf1, a Vg1-related gene. , Wall NA., Dev Biol. November 15, 2000; 227 (2): 495-509.
Zic3 is involved in the left- right specification of the Xenopus embryo. , Kitaguchi T., Development. November 1, 2000; 127 (22): 4787-95.
Regulation of gut and heart left- right asymmetry by context-dependent interactions between xenopus lefty and BMP4 signaling. , Branford WW ., Dev Biol. July 15, 2000; 223 (2): 291-306.
Mechanisms of left- right determination in vertebrates. , Capdevila J., Cell. March 31, 2000; 101 (1): 9-21.
Cardiac looping and the vertebrate left- right axis: antagonism of left-sided Vg1 activity by a right-sided ALK2-dependent BMP pathway. , Ramsdell AF., Development. December 1, 1999; 126 (23): 5195-205.
Neuregulin induces the expression of mesodermal genes in the ectoderm of Xenopus laevis. , Chung HG., Mol Cells. October 31, 1999; 9 (5): 497-503.
Xenopus Smad7 inhibits both the activin and BMP pathways and acts as a neural inducer. , Casellas R., Dev Biol. June 1, 1998; 198 (1): 1-12.
Xwnt-2b is a novel axis-inducing Xenopus Wnt, which is expressed in embryonic brain. , Landesman Y., Mech Dev. May 1, 1997; 63 (2): 199-209.
Disruption of BMP signals in embryonic Xenopus ectoderm leads to direct neural induction. , Hawley SH., Genes Dev. December 1, 1995; 9 (23): 2923-35.
The TGF-beta-related DVR gene family in mammalian development. , Lyons KM., Ciba Found Symp. January 1, 1992; 165 219-30; discussion 230-4.
Involvement of Bone Morphogenetic Protein-4 ( BMP-4) and Vgr-1 in morphogenesis and neurogenesis in the mouse. , Jones CM ., Development. February 1, 1991; 111 (2): 531-42.