Results 1 - 31 of 31 results
Membrane potential drives the exit from pluripotency and cell fate commitment via calcium and mTOR. , Sempou E., Nat Commun. November 5, 2022; 13 (1): 6681.
Impact of glyphosate-based herbicide on early embryonic development of the amphibian Xenopus laevis. , Flach H., Aquat Toxicol. March 1, 2022; 244 106081.
Derivation of proliferative islet1-positive cells during metamorphosis and wound response in Xenopus. , Umezawa S., Histochem Cell Biol. January 1, 2021; 155 (1): 133-143.
Transcriptional regulatory elements of hif1α in a distal locus of islet1 in Xenopus laevis. , Miyakawa M., Comp Biochem Physiol B Biochem Mol Biol. January 1, 2021; 255 110598.
Loss of function of Kmt2d, a gene mutated in Kabuki syndrome, affects heart development in Xenopus laevis. , Schwenty-Lara J., Dev Dyn. June 1, 2019; 248 (6): 465-476.
The Wnt inhibitor Dkk1 is required for maintaining the normal cardiac differentiation program in Xenopus laevis. , Guo Y., Dev Biol. May 1, 2019; 449 (1): 1-13.
Genome-wide transcriptomics analysis identifies sox7 and sox18 as specifically regulated by gata4 in cardiomyogenesis. , Afouda BA ., Dev Biol. February 1, 2018; 434 (1): 108-120.
Id genes are essential for early heart formation. , Cunningham TJ., Genes Dev. July 1, 2017; 31 (13): 1325-1338.
The CapZ interacting protein Rcsd1 is required for cardiogenesis downstream of Wnt11a in Xenopus laevis. , Hempel A., Dev Biol. April 1, 2017; 424 (1): 28-39.
Dissecting the pre-placodal transcriptome to reveal presumptive direct targets of Six1 and Eya1 in cranial placodes. , Riddiford N., Elife. August 31, 2016; 5
Spatial regulation of cell cohesion by Wnt5a during second heart field progenitor deployment. , Li D., Dev Biol. April 1, 2016; 412 (1): 18-31.
Predicting Variabilities in Cardiac Gene Expression with a Boolean Network Incorporating Uncertainty. , Grieb M., PLoS One. July 16, 2015; 10 (7): e0131832.
The emergence of Pax7-expressing muscle stem cells during vertebrate head muscle development. , Nogueira JM., Front Aging Neurosci. May 19, 2015; 7 62.
Direct nkx2-5 transcriptional repression of isl1 controls cardiomyocyte subtype identity. , Dorn T., Stem Cells. April 1, 2015; 33 (4): 1113-29.
Temporal and spatial expression analysis of peripheral myelin protein 22 ( Pmp22) in developing Xenopus. , Tae HJ., Gene Expr Patterns. January 1, 2015; 17 (1): 26-30.
Comparative analysis reveals distinct and overlapping functions of Mef2c and Mef2d during cardiogenesis in Xenopus laevis. , Guo Y., PLoS One. January 17, 2014; 9 (1): e87294.
sfrp1 promotes cardiomyocyte differentiation in Xenopus via negative-feedback regulation of Wnt signalling. , Gibb N ., Development. April 1, 2013; 140 (7): 1537-49.
Islet1-expressing cardiac progenitor cells: a comparison across species. , Pandur P ., Dev Genes Evol. March 1, 2013; 223 (1-2): 117-29.
New developments in the second heart field. , Zaffran S., Differentiation. July 1, 2012; 84 (1): 17-24.
Tbx5 overexpression favors a first heart field lineage in murine embryonic stem cells and in Xenopus laevis embryos. , Herrmann F., Dev Dyn. December 1, 2011; 240 (12): 2634-45.
Fgf is required to regulate anterior- posterior patterning in the Xenopus lateral plate mesoderm. , Deimling SJ., Mech Dev. January 1, 2011; 128 (7-10): 327-41.
Expression analysis of Runx3 and other Runx family members during Xenopus development. , Park BY., Gene Expr Patterns. June 1, 2010; 10 (4-5): 159-66.
Neural crest migration requires the activity of the extracellular sulphatases XtSulf1 and XtSulf2. , Guiral EC., Dev Biol. May 15, 2010; 341 (2): 375-88.
Xenopus Meis3 protein lies at a nexus downstream to Zic1 and Pax3 proteins, regulating multiple cell-fates during early nervous system development. , Gutkovich YE., Dev Biol. February 1, 2010; 338 (1): 50-62.
Islet-1 is required for ventral neuron survival in Xenopus. , Shi Y , Shi Y ., Biochem Biophys Res Commun. October 23, 2009; 388 (3): 506-10.
Comparative gene expression analysis and fate mapping studies suggest an early segregation of cardiogenic lineages in Xenopus laevis. , Gessert S., Dev Biol. October 15, 2009; 334 (2): 395-408.
In vitro organogenesis from undifferentiated cells in Xenopus. , Asashima M ., Dev Dyn. June 1, 2009; 238 (6): 1309-20.
Loss of REEP4 causes paralysis of the Xenopus embryo. , Argasinska J ., Int J Dev Biol. January 1, 2009; 53 (1): 37-43.
DM-GRASP/ ALCAM/ CD166 is required for cardiac morphogenesis and maintenance of cardiac identity in first heart field derived cells. , Gessert S., Dev Biol. September 1, 2008; 321 (1): 150-61.
The amphibian second heart field: Xenopus islet-1 is required for cardiovascular development. , Brade T., Dev Biol. November 15, 2007; 311 (2): 297-310.
Development of the pancreas in Xenopus laevis. , Kelly OG., Dev Dyn. August 1, 2000; 218 (4): 615-27.