Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (2463) Expression Attributions Wiki
XB-ANAT-63

Papers associated with heart (and isl1)

Limit to papers also referencing gene:
Show all heart papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Fbrsl1 is required for heart development in Xenopus laevis and de novo variants in FBRSL1 can cause human heart defects., Berger H., Dis Model Mech. June 1, 2024; 17 (6):   


Mechanistic study of transcription factor Sox18 during heart development., Liang J., Gen Comp Endocrinol. May 1, 2024; 350 114472.


Membrane potential drives the exit from pluripotency and cell fate commitment via calcium and mTOR., Sempou E., Nat Commun. November 5, 2022; 13 (1): 6681.   


Impact of glyphosate-based herbicide on early embryonic development of the amphibian Xenopus laevis., Flach H., Aquat Toxicol. March 1, 2022; 244 106081.


Derivation of proliferative islet1-positive cells during metamorphosis and wound response in Xenopus., Umezawa S., Histochem Cell Biol. January 1, 2021; 155 (1): 133-143.


Transcriptional regulatory elements of hif1α in a distal locus of islet1 in Xenopus laevis., Miyakawa M., Comp Biochem Physiol B Biochem Mol Biol. January 1, 2021; 255 110598.


Loss of function of Kmt2d, a gene mutated in Kabuki syndrome, affects heart development in Xenopus laevis., Schwenty-Lara J., Dev Dyn. June 1, 2019; 248 (6): 465-476.   


The Wnt inhibitor Dkk1 is required for maintaining the normal cardiac differentiation program in Xenopus laevis., Guo Y., Dev Biol. May 1, 2019; 449 (1): 1-13.   


Genome-wide transcriptomics analysis identifies sox7 and sox18 as specifically regulated by gata4 in cardiomyogenesis., Afouda BA., Dev Biol. February 1, 2018; 434 (1): 108-120.   


Id genes are essential for early heart formation., Cunningham TJ., Genes Dev. July 1, 2017; 31 (13): 1325-1338.   


The CapZ interacting protein Rcsd1 is required for cardiogenesis downstream of Wnt11a in Xenopus laevis., Hempel A., Dev Biol. April 1, 2017; 424 (1): 28-39.   


Dissecting the pre-placodal transcriptome to reveal presumptive direct targets of Six1 and Eya1 in cranial placodes., Riddiford N., Elife. August 31, 2016; 5   


Spatial regulation of cell cohesion by Wnt5a during second heart field progenitor deployment., Li D., Dev Biol. April 1, 2016; 412 (1): 18-31.   


Predicting Variabilities in Cardiac Gene Expression with a Boolean Network Incorporating Uncertainty., Grieb M., PLoS One. July 16, 2015; 10 (7): e0131832.   


The emergence of Pax7-expressing muscle stem cells during vertebrate head muscle development., Nogueira JM., Front Aging Neurosci. May 19, 2015; 7 62.   


Direct nkx2-5 transcriptional repression of isl1 controls cardiomyocyte subtype identity., Dorn T., Stem Cells. April 1, 2015; 33 (4): 1113-29.   


Temporal and spatial expression analysis of peripheral myelin protein 22 (Pmp22) in developing Xenopus., Tae HJ., Gene Expr Patterns. January 1, 2015; 17 (1): 26-30.   


Comparative analysis reveals distinct and overlapping functions of Mef2c and Mef2d during cardiogenesis in Xenopus laevis., Guo Y., PLoS One. January 17, 2014; 9 (1): e87294.   


sfrp1 promotes cardiomyocyte differentiation in Xenopus via negative-feedback regulation of Wnt signalling., Gibb N., Development. April 1, 2013; 140 (7): 1537-49.   


Islet1-expressing cardiac progenitor cells: a comparison across species., Pandur P., Dev Genes Evol. March 1, 2013; 223 (1-2): 117-29.   


New developments in the second heart field., Zaffran S., Differentiation. July 1, 2012; 84 (1): 17-24.


Tbx5 overexpression favors a first heart field lineage in murine embryonic stem cells and in Xenopus laevis embryos., Herrmann F., Dev Dyn. December 1, 2011; 240 (12): 2634-45.   


Fgf is required to regulate anterior-posterior patterning in the Xenopus lateral plate mesoderm., Deimling SJ., Mech Dev. January 1, 2011; 128 (7-10): 327-41.   


Expression analysis of Runx3 and other Runx family members during Xenopus development., Park BY., Gene Expr Patterns. June 1, 2010; 10 (4-5): 159-66.   


Neural crest migration requires the activity of the extracellular sulphatases XtSulf1 and XtSulf2., Guiral EC., Dev Biol. May 15, 2010; 341 (2): 375-88.   


Xenopus Meis3 protein lies at a nexus downstream to Zic1 and Pax3 proteins, regulating multiple cell-fates during early nervous system development., Gutkovich YE., Dev Biol. February 1, 2010; 338 (1): 50-62.   


Islet-1 is required for ventral neuron survival in Xenopus., Shi Y., Biochem Biophys Res Commun. October 23, 2009; 388 (3): 506-10.   


Comparative gene expression analysis and fate mapping studies suggest an early segregation of cardiogenic lineages in Xenopus laevis., Gessert S., Dev Biol. October 15, 2009; 334 (2): 395-408.   


In vitro organogenesis from undifferentiated cells in Xenopus., Asashima M., Dev Dyn. June 1, 2009; 238 (6): 1309-20.   


Loss of REEP4 causes paralysis of the Xenopus embryo., Argasinska J., Int J Dev Biol. January 1, 2009; 53 (1): 37-43.   


DM-GRASP/ALCAM/CD166 is required for cardiac morphogenesis and maintenance of cardiac identity in first heart field derived cells., Gessert S., Dev Biol. September 1, 2008; 321 (1): 150-61.   


The amphibian second heart field: Xenopus islet-1 is required for cardiovascular development., Brade T., Dev Biol. November 15, 2007; 311 (2): 297-310.   


Expression of Bmp ligands and receptors in the developing Xenopus retina., Hocking JC., Int J Dev Biol. January 1, 2007; 51 (2): 161-5.   


Development of the pancreas in Xenopus laevis., Kelly OG., Dev Dyn. August 1, 2000; 218 (4): 615-27.   

???pagination.result.page??? 1