Results 1 - 21 of 21 results
Asymmetrically reduced expression of hand1 homeologs involving a single nucleotide substitution in a cis-regulatory element. , Ochi H ., Dev Biol. May 15, 2017; 425 (2): 152-160.
CUG-BP, Elav-like family member 1 (CELF1) is required for normal myofibrillogenesis, morphogenesis, and contractile function in the embryonic heart. , Blech-Hermoni Y., Dev Dyn. August 1, 2016; 245 (8): 854-73.
Understanding early organogenesis using a simplified in situ hybridization protocol in Xenopus. , Deimling SJ., J Vis Exp. January 12, 2015; (95): e51526.
Suppression of Bmp4 signaling by the zinc-finger repressors Osr1 and Osr2 is required for Wnt/ β-catenin-mediated lung specification in Xenopus. , Rankin SA , Rankin SA ., Development. August 1, 2012; 139 (16): 3010-20.
Fgf is required to regulate anterior- posterior patterning in the Xenopus lateral plate mesoderm. , Deimling SJ., Mech Dev. January 1, 2011; 128 (7-10): 327-41.
Comparative gene expression analysis and fate mapping studies suggest an early segregation of cardiogenic lineages in Xenopus laevis. , Gessert S., Dev Biol. October 15, 2009; 334 (2): 395-408.
Retinoic acid regulates anterior- posterior patterning within the lateral plate mesoderm of Xenopus. , Deimling SJ., Mech Dev. October 1, 2009; 126 (10): 913-23.
HIF-1alpha signaling upstream of NKX2.5 is required for cardiac development in Xenopus. , Nagao K., J Biol Chem. April 25, 2008; 283 (17): 11841-9.
Redundancy and evolution of GATA factor requirements in development of the myocardium. , Peterkin T., Dev Biol. November 15, 2007; 311 (2): 623-35.
Constitutive over-expression of VEGF results in reduced expression of Hand-1 during cardiac development in Xenopus. , Nagao K., Biochem Biophys Res Commun. August 3, 2007; 359 (3): 431-7.
Retinoic acid signaling is essential for formation of the heart tube in Xenopus. , Collop AH., Dev Biol. March 1, 2006; 291 (1): 96-109.
Cardiomyogenic differentiation in cardiac myxoma expressing lineage-specific transcription factors. , Kodama H., Am J Pathol. August 1, 2002; 161 (2): 381-9.
The combinatorial activities of Nkx2.5 and dHAND are essential for cardiac ventricle formation. , Yamagishi H., Dev Biol. November 15, 2001; 239 (2): 190-203.
Conservation of sequence and expression of Xenopus and zebrafish dHAND during cardiac, branchial arch and lateral mesoderm development. , Angelo S., Mech Dev. July 1, 2000; 95 (1-2): 231-7.
The morphology of heart development in Xenopus laevis. , Mohun TJ ., Dev Biol. February 1, 2000; 218 (1): 74-88.
Retinoic acid is required in the mouse embryo for left- right asymmetry determination and heart morphogenesis. , Chazaud C., Development. June 1, 1999; 126 (12): 2589-96.
The cardiac homeobox gene Csx/ Nkx2.5 lies genetically upstream of multiple genes essential for heart development. , Tanaka M., Development. March 1, 1999; 126 (6): 1269-80.
Seeking a regulatory roadmap for heart morphogenesis. , Harvey RP ., Semin Cell Dev Biol. February 1, 1999; 10 (1): 99-107.
Failure of ventral closure and axial rotation in embryos lacking the proprotein convertase Furin. , Roebroek AJ., Development. December 1, 1998; 125 (24): 4863-76.
Xenopus eHAND: a marker for the developing cardiovascular system of the embryo that is regulated by bone morphogenetic proteins. , Sparrow DB ., Mech Dev. February 1, 1998; 71 (1-2): 151-63.
Homeodomain factor Nkx2-5 controls left/ right asymmetric expression of bHLH gene eHand during murine heart development. , Biben C., Genes Dev. June 1, 1997; 11 (11): 1357-69.