Results 1 - 30 of 30 results
Impact of glyphosate-based herbicide on early embryonic development of the amphibian Xenopus laevis. , Flach H., Aquat Toxicol. March 1, 2022; 244 106081.
Gene expression of the two developmentally regulated dermatan sulfate epimerases in the Xenopus embryo. , Gouignard N ., PLoS One. January 18, 2018; 13 (1): e0191751.
Formin Is Associated with Left- Right Asymmetry in the Pond Snail and the Frog. , Davison A., Curr Biol. March 7, 2016; 26 (5): 654-60.
Genes regulated by potassium channel tetramerization domain containing 15 (Kctd15) in the developing neural crest. , Wong TC., Int J Dev Biol. January 1, 2016; 60 (4-6): 159-66.
The ribosome biogenesis factor Nol11 is required for optimal rDNA transcription and craniofacial development in Xenopus. , Griffin JN., PLoS Genet. March 10, 2015; 11 (3): e1005018.
5-Mehtyltetrahydrofolate rescues alcohol-induced neural crest cell migration abnormalities. , Shi Y , Shi Y ., Mol Brain. September 16, 2014; 7 67.
Expression pattern of zcchc24 during early Xenopus development. , Vitorino M., Int J Dev Biol. January 1, 2014; 58 (1): 45-50.
Xenopus laevis nucleotide binding protein 1 (xNubp1) is important for convergent extension movements and controls ciliogenesis via regulation of the actin cytoskeleton. , Ioannou A ., Dev Biol. August 15, 2013; 380 (2): 243-58.
Calponin 2 acts as an effector of noncanonical Wnt-mediated cell polarization during neural crest cell migration. , Ulmer B., Cell Rep. March 28, 2013; 3 (3): 615-21.
ATP4a is required for Wnt-dependent Foxj1 expression and leftward flow in Xenopus left- right development. , Walentek P ., Cell Rep. May 31, 2012; 1 (5): 516-27.
Mutations in IRX5 impair craniofacial development and germ cell migration via SDF1. , Bonnard C., Nat Genet. May 13, 2012; 44 (6): 709-13.
Plakophilin-3 is required for late embryonic amphibian development, exhibiting roles in ectodermal and neural tissues. , Munoz WA., PLoS One. January 1, 2012; 7 (4): e34342.
ARVCF depletion cooperates with Tbx1 deficiency in the development of 22q11.2DS-like phenotypes in Xenopus. , Tran HT., Dev Dyn. December 1, 2011; 240 (12): 2680-7.
Xenopus reduced folate carrier regulates neural crest development epigenetically. , Li J., PLoS One. January 1, 2011; 6 (11): e27198.
Regulation of vertebrate embryogenesis by the exon junction complex core component Eif4a3. , Haremaki T ., Dev Dyn. July 1, 2010; 239 (7): 1977-87.
Neural crest migration requires the activity of the extracellular sulphatases XtSulf1 and XtSulf2. , Guiral EC., Dev Biol. May 15, 2010; 341 (2): 375-88.
Systematic discovery of nonobvious human disease models through orthologous phenotypes. , McGary KL., Proc Natl Acad Sci U S A. April 6, 2010; 107 (14): 6544-9.
CHD7 cooperates with PBAF to control multipotent neural crest formation. , Bajpai R ., Nature. February 18, 2010; 463 (7283): 958-62.
Diversification of the expression patterns and developmental functions of the dishevelled gene family during chordate evolution. , Gray RS ., Dev Dyn. August 1, 2009; 238 (8): 2044-57.
Semaphorin and neuropilin expression during early morphogenesis of Xenopus laevis. , Koestner U., Dev Dyn. December 1, 2008; 237 (12): 3853-63.
A Myc- Slug ( Snail2)/ Twist regulatory circuit directs vascular development. , Rodrigues CO., Development. June 1, 2008; 135 (11): 1903-11.
Genomic profiling of mixer and Sox17beta targets during Xenopus endoderm development. , Dickinson K., Dev Dyn. February 1, 2006; 235 (2): 368-81.
DRAGON, a bone morphogenetic protein co-receptor. , Samad TA., J Biol Chem. April 8, 2005; 280 (14): 14122-9.
Gene profiling during neural induction in Xenopus laevis: regulation of BMP signaling by post-transcriptional mechanisms and TAB3, a novel TAK1-binding protein. , Muñoz-Sanjuán I., Development. December 1, 2002; 129 (23): 5529-40.
The maternal Xenopus beta-catenin signaling pathway, activated by frizzled homologs, induces goosecoid in a cell non-autonomous manner. , Brown JD ., Dev Growth Differ. August 1, 2000; 42 (4): 347-57.
Genomic organization, expression, and chromosome location of the human SNAIL gene ( SNAI1) and a related processed pseudogene (SNAI1P). , Paznekas WA., Genomics. November 15, 1999; 62 (1): 42-9.
X-twi is expressed prior to gastrulation in presumptive neurectodermal and mesodermal cells in dorsalized and ventralized Xenopus laevis embryos. , Stoetzel C., Int J Dev Biol. September 1, 1998; 42 (6): 747-56.
Xenopus Smad7 inhibits both the activin and BMP pathways and acts as a neural inducer. , Casellas R., Dev Biol. June 1, 1998; 198 (1): 1-12.
tinman, a Drosophila homeobox gene required for heart and visceral mesoderm specification, may be represented by a family of genes in vertebrates: XNkx-2.3, a second vertebrate homologue of tinman. , Evans SM., Development. November 1, 1995; 121 (11): 3889-99.
v- erbA and citral reduce the teratogenic effects of all-trans retinoic acid and retinol, respectively, in Xenopus embryogenesis. , Schuh TJ ., Development. November 1, 1993; 119 (3): 785-98.