Results 1 - 50 of 90 results
Positive feedback regulation of frizzled-7 expression robustly shapes a steep Wnt gradient in Xenopus heart development, together with sFRP1 and heparan sulfate. , Yamamoto T ., Elife. August 9, 2022; 11
RNA demethylation by FTO stabilizes the FOXJ1 mRNA for proper motile ciliogenesis. , Kim H ., Dev Cell. April 19, 2021; 56 (8): 1118-1130.e6.
The secreted BMP antagonist ERFE is required for the development of a functional circulatory system in Xenopus. , Melchert J., Dev Biol. March 15, 2020; 459 (2): 138-148.
Differential expression of foxo genes during embryonic development and in adult tissues of Xenopus tropicalis. , Zheng L., Gene Expr Patterns. January 1, 2020; 35 119091.
Leukemia inhibitory factor signaling in Xenopus embryo: Insights from gain of function analysis and dominant negative mutant of the receptor. , Jalvy S., Dev Biol. March 15, 2019; 447 (2): 200-213.
Comparative Embryonic Spatio-Temporal Expression Profile Map of the Xenopus P2X Receptor Family. , Blanchard C., Front Cell Neurosci. February 18, 2019; 13 340.
Liver Specification in the Absence of Cardiac Differentiation Revealed by Differential Sensitivity to Wnt/β Catenin Pathway Activation. , Haworth K., Front Physiol. February 1, 2019; 10 155.
CRISPR/Cas9-mediated efficient and precise targeted integration of donor DNA harboring double cleavage sites in Xenopus tropicalis. , Mao CZ., FASEB J. June 13, 2018; fj201800093.
Genome-wide transcriptomics analysis identifies sox7 and sox18 as specifically regulated by gata4 in cardiomyogenesis. , Afouda BA ., Dev Biol. February 1, 2018; 434 (1): 108-120.
A Nonredundant Role for the TRPM6 Channel in Neural Tube Closure. , Komiya Y., Sci Rep. November 15, 2017; 7 (1): 15623.
A newly identified Rab-GDI paralogue has a role in neural development in amphibia. , Nazlamova L., Gene. January 30, 2017; 599 78-86.
Expression profile of rrbp1 genes during embryonic development and in adult tissues of Xenopus laevis. , Liu GH ., Gene Expr Patterns. January 1, 2017; 23-24 1-6.
FoxD1 protein interacts with Wnt and BMP signaling to differentially pattern mesoderm and neural tissue. , Polevoy H., Int J Dev Biol. January 1, 2017; 61 (3-4-5): 293-302.
Identification and characterization of Xenopus tropicalis common progenitors of Sertoli and peritubular myoid cell lineages. , Tlapakova T ., Biol Open. September 15, 2016; 5 (9): 1275-82.
Nodal signalling in Xenopus: the role of Xnr5 in left/ right asymmetry and heart development. , Tadjuidje E ., Open Biol. August 1, 2016; 6 (8):
Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development. , Owens ND., Cell Rep. January 26, 2016; 14 (3): 632-47.
Genes regulated by potassium channel tetramerization domain containing 15 (Kctd15) in the developing neural crest. , Wong TC., Int J Dev Biol. January 1, 2016; 60 (4-6): 159-66.
Kruppel-like factor family genes are expressed during Xenopus embryogenesis and involved in germ layer formation and body axis patterning. , Gao Y., Dev Dyn. October 1, 2015; 244 (10): 1328-46.
Genome-Wide Identification and Expression of Xenopus F-Box Family of Proteins. , Saritas-Yildirim B., PLoS One. September 1, 2015; 10 (9): e0136929.
E2a is necessary for Smad2/3-dependent transcription and the direct repression of lefty during gastrulation. , Wills AE ., Dev Cell. February 9, 2015; 32 (3): 345-57.
Carboxy terminus of GATA4 transcription factor is required for its cardiogenic activity and interaction with CDK4. , Gallagher JM., Mech Dev. November 1, 2014; 134 31-41.
An essential role for LPA signalling in telencephalon development. , Geach TJ ., Development. February 1, 2014; 141 (4): 940-9.
Cyclin D2 is a GATA4 cofactor in cardiogenesis. , Yamak A., Proc Natl Acad Sci U S A. January 28, 2014; 111 (4): 1415-20.
Xenopus cadherin 5 is specifically expressed in endothelial cells of the developing vascular system. , Neuhaus H ., Int J Dev Biol. January 1, 2014; 58 (1): 51-6.
In vivo T-box transcription factor profiling reveals joint regulation of embryonic neuromesodermal bipotency. , Gentsch GE ., Cell Rep. September 26, 2013; 4 (6): 1185-96.
ANKS6 is a central component of a nephronophthisis module linking NEK8 to INVS and NPHP3. , Hoff S., Nat Genet. August 1, 2013; 45 (8): 951-6.
Three calcium-sensitive genes, fus, brd3 and wdr5, are highly expressed in neural and renal territories during amphibian development. , Bibonne A., Biochim Biophys Acta. July 1, 2013; 1833 (7): 1665-71.
β- Arrestin 1 mediates non-canonical Wnt pathway to regulate convergent extension movements. , Kim GH ., Biochem Biophys Res Commun. May 31, 2013; 435 (2): 182-7.
Retinoic acid-activated Ndrg1a represses Wnt/ β-catenin signaling to allow Xenopus pancreas, oesophagus, stomach, and duodenum specification. , Zhang T., PLoS One. May 15, 2013; 8 (5): e65058.
β-Adrenergic signaling promotes posteriorization in Xenopus early development. , Mori S., Dev Growth Differ. April 1, 2013; 55 (3): 350-8.
sfrp1 promotes cardiomyocyte differentiation in Xenopus via negative-feedback regulation of Wnt signalling. , Gibb N ., Development. April 1, 2013; 140 (7): 1537-49.
Regulation of primitive hematopoiesis by class I histone deacetylases. , Shah RR., Dev Dyn. February 1, 2013; 242 (2): 108-21.
Uncoupling VEGFA functions in arteriogenesis and hematopoietic stem cell specification. , Leung A., Dev Cell. January 28, 2013; 24 (2): 144-58.
A developmental requirement for HIRA-dependent H3.3 deposition revealed at gastrulation in Xenopus. , Szenker E., Cell Rep. June 28, 2012; 1 (6): 730-40.
An essential and highly conserved role for Zic3 in left- right patterning, gastrulation and convergent extension morphogenesis. , Cast AE ., Dev Biol. April 1, 2012; 364 (1): 22-31.
Inhibition of heart formation by lithium is an indirect result of the disruption of tissue organization within the embryo. , Martin LK ., Dev Growth Differ. February 1, 2012; 54 (2): 153-66.
Molecular cloning of phd1 and comparative analysis of phd1, 2, and 3 expression in Xenopus laevis. , Han D., ScientificWorldJournal. January 1, 2012; 2012 689287.
Developmental expression of the fermitin/kindlin gene family in Xenopus laevis embryos. , Canning CA ., Dev Dyn. August 1, 2011; 240 (8): 1958-63.
Different requirements for GATA factors in cardiogenesis are mediated by non-canonical Wnt signaling. , Afouda BA ., Dev Dyn. March 1, 2011; 240 (3): 649-62.
APOBEC2, a selective inhibitor of TGFβ signaling, regulates left- right axis specification during early embryogenesis. , Vonica A ., Dev Biol. February 1, 2011; 350 (1): 13-23.
The secreted integrin ligand nephronectin is necessary for forelimb formation in Xenopus tropicalis. , Abu-Daya A., Dev Biol. January 15, 2011; 349 (2): 204-12.
Shox2 mediates Tbx5 activity by regulating Bmp4 in the pacemaker region of the developing heart. , Puskaric S., Hum Mol Genet. December 1, 2010; 19 (23): 4625-33.
Expression analysis of Runx3 and other Runx family members during Xenopus development. , Park BY., Gene Expr Patterns. June 1, 2010; 10 (4-5): 159-66.
Identification, characterization, and effects of Xenopus laevis PNAS-4 gene on embryonic development. , Yan F., J Biomed Biotechnol. January 1, 2010; 2010 134764.
FGF-activated calcium channels control neural gene expression in Xenopus. , Lee KW., Biochim Biophys Acta. June 1, 2009; 1793 (6): 1033-40.
Xenopus Wntless and the retromer complex cooperate to regulate XWnt4 secretion. , Kim H ., Mol Cell Biol. April 1, 2009; 29 (8): 2118-28.
N- and E-cadherins in Xenopus are specifically required in the neural and non- neural ectoderm, respectively, for F-actin assembly and morphogenetic movements. , Nandadasa S., Development. April 1, 2009; 136 (8): 1327-38.
The Xenopus Bowline/Ripply family proteins negatively regulate the transcriptional activity of T-box transcription factors. , Hitachi K ., Int J Dev Biol. January 1, 2009; 53 (4): 631-9.
Cardiac differentiation in Xenopus requires the cyclin-dependent kinase inhibitor, p27Xic1. , Movassagh M., Cardiovasc Res. August 1, 2008; 79 (3): 436-47.
GATA4 and GATA5 are essential for heart and liver development in Xenopus embryos. , Haworth KE., BMC Dev Biol. July 28, 2008; 8 74.