Results 1 - 50 of 97 results
Membrane potential drives the exit from pluripotency and cell fate commitment via calcium and mTOR. , Sempou E., Nat Commun. November 5, 2022; 13 (1): 6681.
Normal Table of Xenopus development: a new graphical resource. , Zahn N ., Development. July 15, 2022; 149 (14):
Xenopus gpx3 Mediates Posterior Development by Regulating Cell Death during Embryogenesis. , Lee H , Lee H ., Antioxidants (Basel). December 12, 2020; 9 (12):
The secreted BMP antagonist ERFE is required for the development of a functional circulatory system in Xenopus. , Melchert J., Dev Biol. March 15, 2020; 459 (2): 138-148.
The Wnt inhibitor Dkk1 is required for maintaining the normal cardiac differentiation program in Xenopus laevis. , Guo Y., Dev Biol. May 1, 2019; 449 (1): 1-13.
Liver Specification in the Absence of Cardiac Differentiation Revealed by Differential Sensitivity to Wnt/β Catenin Pathway Activation. , Haworth K., Front Physiol. February 1, 2019; 10 155.
A YWHAZ Variant Associated With Cardiofaciocutaneous Syndrome Activates the RAF- ERK Pathway. , Popov IK., Front Physiol. February 1, 2019; 10 388.
The extraordinary biology and development of marsupial frogs (Hemiphractidae) in comparison with fish, mammals, birds, amphibians and other animals. , Del Pino EM ., Mech Dev. December 1, 2018; 154 2-11.
Innate Immune Response and Off-Target Mis-splicing Are Common Morpholino-Induced Side Effects in Xenopus. , Gentsch GE ., Dev Cell. March 12, 2018; 44 (5): 597-610.e10.
Candidate Heterotaxy Gene FGFR4 Is Essential for Patterning of the Left- Right Organizer in Xenopus. , Sempou E., Front Physiol. February 5, 2018; 9 1705.
Xenopus pitx3 target genes lhx1 and xnr5 are identified using a novel three-fluor flow cytometry-based analysis of promoter activation and repression. , Hooker LN., Dev Dyn. September 1, 2017; 246 (9): 657-669.
Id genes are essential for early heart formation. , Cunningham TJ., Genes Dev. July 1, 2017; 31 (13): 1325-1338.
Identification of new regulators of embryonic patterning and morphogenesis in Xenopus gastrulae by RNA sequencing. , Popov IK., Dev Biol. June 15, 2017; 426 (2): 429-441.
Coordinating heart morphogenesis: A novel role for hyperpolarization-activated cyclic nucleotide-gated (HCN) channels during cardiogenesis in Xenopus laevis. , Pitcairn E., Commun Integr Biol. May 10, 2017; 10 (3): e1309488.
Splicing variation of Long- IRBIT determines the target selectivity of IRBIT family proteins. , Kawaai K., Proc Natl Acad Sci U S A. April 11, 2017; 114 (15): 3921-3926.
Nodal signalling in Xenopus: the role of Xnr5 in left/ right asymmetry and heart development. , Tadjuidje E ., Open Biol. August 1, 2016; 6 (8):
Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development. , Owens ND., Cell Rep. January 26, 2016; 14 (3): 632-47.
Kruppel-like factor family genes are expressed during Xenopus embryogenesis and involved in germ layer formation and body axis patterning. , Gao Y., Dev Dyn. October 1, 2015; 244 (10): 1328-46.
Xenopus Pkdcc1 and Pkdcc2 Are Two New Tyrosine Kinases Involved in the Regulation of JNK Dependent Wnt/PCP Signaling Pathway. , Vitorino M., PLoS One. August 13, 2015; 10 (8): e0135504.
E2a is necessary for Smad2/3-dependent transcription and the direct repression of lefty during gastrulation. , Wills AE ., Dev Cell. February 9, 2015; 32 (3): 345-57.
Hhex and Cer1 mediate the Sox17 pathway for cardiac mesoderm formation in embryonic stem cells. , Liu Y ., Stem Cells. June 1, 2014; 32 (6): 1515-26.
An essential role for LPA signalling in telencephalon development. , Geach TJ ., Development. February 1, 2014; 141 (4): 940-9.
Dvr1 transfers left- right asymmetric signals from Kupffer''s vesicle to lateral plate mesoderm in zebrafish. , Peterson AG., Dev Biol. October 1, 2013; 382 (1): 198-208.
In vivo T-box transcription factor profiling reveals joint regulation of embryonic neuromesodermal bipotency. , Gentsch GE ., Cell Rep. September 26, 2013; 4 (6): 1185-96.
β- Arrestin 1 mediates non-canonical Wnt pathway to regulate convergent extension movements. , Kim GH ., Biochem Biophys Res Commun. May 31, 2013; 435 (2): 182-7.
Regulation of primitive hematopoiesis by class I histone deacetylases. , Shah RR., Dev Dyn. February 1, 2013; 242 (2): 108-21.
Suppression of Bmp4 signaling by the zinc-finger repressors Osr1 and Osr2 is required for Wnt/ β-catenin-mediated lung specification in Xenopus. , Rankin SA , Rankin SA ., Development. August 1, 2012; 139 (16): 3010-20.
A developmental requirement for HIRA-dependent H3.3 deposition revealed at gastrulation in Xenopus. , Szenker E., Cell Rep. June 28, 2012; 1 (6): 730-40.
An essential and highly conserved role for Zic3 in left- right patterning, gastrulation and convergent extension morphogenesis. , Cast AE ., Dev Biol. April 1, 2012; 364 (1): 22-31.
EBF proteins participate in transcriptional regulation of Xenopus muscle development. , Green YS., Dev Biol. October 1, 2011; 358 (1): 240-50.
Negative feedback in the bone morphogenetic protein 4 ( BMP4) synexpression group governs its dynamic signaling range and canalizes development. , Paulsen M., Proc Natl Acad Sci U S A. June 21, 2011; 108 (25): 10202-7.
APOBEC2, a selective inhibitor of TGFβ signaling, regulates left- right axis specification during early embryogenesis. , Vonica A ., Dev Biol. February 1, 2011; 350 (1): 13-23.
Fgf is required to regulate anterior- posterior patterning in the Xenopus lateral plate mesoderm. , Deimling SJ., Mech Dev. January 1, 2011; 128 (7-10): 327-41.
Gadd45a and Gadd45g regulate neural development and exit from pluripotency in Xenopus. , Kaufmann LT., Mech Dev. January 1, 2011; 128 (7-10): 401-11.
Focal adhesion kinase is essential for cardiac looping and multichamber heart formation. , Doherty JT., Genesis. August 1, 2010; 48 (8): 492-504.
FoxO genes are dispensable during gastrulation but required for late embryogenesis in Xenopus laevis. , Schuff M., Dev Biol. January 15, 2010; 337 (2): 259-73.
Early activation of FGF and nodal pathways mediates cardiac specification independently of Wnt/beta-catenin signaling. , Samuel LJ., PLoS One. October 28, 2009; 4 (10): e7650.
Normal levels of p27 are necessary for somite segmentation and determining pronephric organ size. , Naylor RW., Organogenesis. October 1, 2009; 5 (4): 201-10.
Xenopus Wntless and the retromer complex cooperate to regulate XWnt4 secretion. , Kim H ., Mol Cell Biol. April 1, 2009; 29 (8): 2118-28.
Lef1 plays a role in patterning the mesoderm and ectoderm in Xenopus tropicalis. , Roel G., Int J Dev Biol. January 1, 2009; 53 (1): 81-9.
Modulation of the beta-catenin signaling pathway by the dishevelled-associated protein Hipk1. , Louie SH., PLoS One. January 1, 2009; 4 (2): e4310.
Xenopus BTBD6 and its Drosophila homologue lute are required for neuronal development. , Bury FJ., Dev Dyn. November 1, 2008; 237 (11): 3352-60.
Extracellular regulation of developmental cell signaling by XtSulf1. , Freeman SD., Dev Biol. August 15, 2008; 320 (2): 436-45.
A crucial role of a high mobility group protein HMGA2 in cardiogenesis. , Monzen K., Nat Cell Biol. May 1, 2008; 10 (5): 567-74.
The mych gene is required for neural crest survival during zebrafish development. , Hong SK., PLoS One. April 9, 2008; 3 (4): e2029.
Dkk3 is required for TGF-beta signaling during Xenopus mesoderm induction. , Pinho S., Differentiation. December 1, 2007; 75 (10): 957-67.
Two T-box genes play independent and cooperative roles to regulate morphogenesis of ciliated Kupffer's vesicle in zebrafish. , Amack JD., Dev Biol. October 15, 2007; 310 (2): 196-210.
Myoskeletin, a factor related to Myocardin, is expressed in somites and required for hypaxial muscle formation in Xenopus. , Zhao H ., Int J Dev Biol. January 1, 2007; 51 (4): 315-20.
Differential expression of two TEF-1 (TEAD) genes during Xenopus laevis development and in response to inducing factors. , Naye F., Int J Dev Biol. January 1, 2007; 51 (8): 745-52.
ADMP2 is essential for primitive blood and heart development in Xenopus. , Kumano G ., Dev Biol. November 15, 2006; 299 (2): 411-23.