Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (1651) Expression Attributions Wiki
XB-ANAT-58

Papers associated with somite (and dll1)

Limit to papers also referencing gene:
Show all somite papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

The enpp4 ectonucleotidase regulates kidney patterning signalling networks in Xenopus embryos., Massé K., Commun Biol. October 7, 2021; 4 (1): 1158.                                


On the origin of vertebrate somites., Onai T., Zoological Lett. June 15, 2015; 1 33.              


Development of the vertebrate tailbud., Beck CW., Wiley Interdiscip Rev Dev Biol. January 1, 2015; 4 (1): 33-44.        


Circadian genes, xBmal1 and xNocturnin, modulate the timing and differentiation of somites in Xenopus laevis., Curran KL., PLoS One. January 1, 2014; 9 (9): e108266.                            


Sim2 prevents entry into the myogenic program by repressing MyoD transcription during limb embryonic myogenesis., Havis E., Development. June 1, 2012; 139 (11): 1910-20.                    


Somitogenesis in the anole lizard and alligator reveals evolutionary convergence and divergence in the amniote segmentation clock., Eckalbar WL., Dev Biol. March 1, 2012; 363 (1): 308-19.


Notch activates Wnt-4 signalling to control medio-lateral patterning of the pronephros., Naylor RW., Development. November 1, 2009; 136 (21): 3585-95.                                  


Xenopus BTBD6 and its Drosophila homologue lute are required for neuronal development., Bury FJ., Dev Dyn. November 1, 2008; 237 (11): 3352-60.              


Tbx6, Thylacine1, and E47 synergistically activate bowline expression in Xenopus somitogenesis., Hitachi K., Dev Biol. January 15, 2008; 313 (2): 816-28.      


Neurogenin and NeuroD direct transcriptional targets and their regulatory enhancers., Seo S., EMBO J. December 12, 2007; 26 (24): 5093-108.  


Bowline mediates association of the transcriptional corepressor XGrg-4 with Tbx6 during somitogenesis in Xenopus., Kondow A., Biochem Biophys Res Commun. August 10, 2007; 359 (4): 959-64.        


PCNS: a novel protocadherin required for cranial neural crest migration and somite morphogenesis in Xenopus., Rangarajan J., Dev Biol. July 1, 2006; 295 (1): 206-18.              


Tes regulates neural crest migration and axial elongation in Xenopus., Dingwell KS., Dev Biol. May 1, 2006; 293 (1): 252-67.                          


Interaction between X-Delta-2 and Hox genes regulates segmentation and patterning of the anteroposterior axis., Peres JN., Mech Dev. April 1, 2006; 123 (4): 321-33.                          


FGF8, Wnt8 and Myf5 are target genes of Tbx6 during anteroposterior specification in Xenopus embryo., Li HY., Dev Biol. February 15, 2006; 290 (2): 470-81.                    


Interplay between Notch signaling and the homeoprotein Xiro1 is required for neural crest induction in Xenopus embryos., Glavic A., Development. January 1, 2004; 131 (2): 347-59.              


Isolation and characterization of Xenopus Hey-1: a downstream mediator of Notch signaling., Rones MS., Dev Dyn. December 1, 2002; 225 (4): 554-60.                      


Intrinsic differences between the superficial and deep layers of the Xenopus ectoderm control primary neuronal differentiation., Chalmers AD., Dev Cell. February 1, 2002; 2 (2): 171-82.    


Nrarp is a novel intracellular component of the Notch signaling pathway., Lamar E., Genes Dev. August 1, 2001; 15 (15): 1885-99.                        


Notch regulates cell fate in the developing pronephros., McLaughlin KA., Dev Biol. November 15, 2000; 227 (2): 567-80.            


The protocadherin PAPC establishes segmental boundaries during somitogenesis in xenopus embryos., Kim SH., Curr Biol. July 13, 2000; 10 (14): 821-30.              


Primary neuronal differentiation in Xenopus embryos is linked to the beta(3) subunit of the sodium pump., Messenger NJ., Dev Biol. April 15, 2000; 220 (2): 168-82.                  


A two-step mechanism generates the spacing pattern of the ciliated cells in the skin of Xenopus embryos., Deblandre GA., Development. November 1, 1999; 126 (21): 4715-28.                  


Functional association of retinoic acid and hedgehog signaling in Xenopus primary neurogenesis., Franco PG., Development. October 1, 1999; 126 (19): 4257-65.          


Periodic repression of Notch pathway genes governs the segmentation of Xenopus embryos., Jen WC., Genes Dev. June 1, 1999; 13 (11): 1486-99.                  


A developmental pathway controlling outgrowth of the Xenopus tail bud., Beck CW., Development. April 1, 1999; 126 (8): 1611-20.                


Gene expression screening in Xenopus identifies molecular pathways, predicts gene function and provides a global view of embryonic patterning., Gawantka V., Mech Dev. October 1, 1998; 77 (2): 95-141.                                                            


Thylacine 1 is expressed segmentally within the paraxial mesoderm of the Xenopus embryo and interacts with the Notch pathway., Sparrow DB., Development. June 1, 1998; 125 (11): 2041-51.                  


Postgastrulation effects of fibroblast growth factor on Xenopus development., Lombardo A., Dev Dyn. May 1, 1998; 212 (1): 75-85.


Analysis of the developing Xenopus tail bud reveals separate phases of gene expression during determination and outgrowth., Beck CW., Mech Dev. March 1, 1998; 72 (1-2): 41-52.                                                                


The Notch ligand, X-Delta-2, mediates segmentation of the paraxial mesoderm in Xenopus embryos., Jen WC., Development. March 1, 1997; 124 (6): 1169-78.                

???pagination.result.page??? 1