Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (1651) Expression Attributions Wiki
XB-ANAT-58

Papers associated with somite (and fgfr1)

Limit to papers also referencing gene:
Show all somite papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

FGF-mediated establishment of left-right asymmetry requires Rab7 function in the dorsal mesoderm in Xenopus., Kreis J., Front Cell Dev Biol. January 1, 2022; 10 981762.                  


The cytokine FAM3B/PANDER is an FGFR ligand that promotes posterior development in Xenopus., Zhang F., Proc Natl Acad Sci U S A. May 18, 2021; 118 (20):           


Kindlin2 regulates neural crest specification via integrin-independent regulation of the FGF signaling pathway., Wang H., Development. May 15, 2021; 148 (10):                                           


Pinhead signaling regulates mesoderm heterogeneity via the FGF receptor-dependent pathway., Ossipova O., Development. September 11, 2020; 147 (17):                 


Pinhead signaling regulates mesoderm heterogeneity via FGF receptor-dependent pathway., Ossipova O., Development. January 1, 2020;                                       


Mechanical strain, novel genes and evolutionary insights: news from the frog left-right organizer., Blum M., Curr Opin Genet Dev. June 1, 2019; 56 8-14.      


A dual function of FGF signaling in Xenopus left-right axis formation., Schneider I., Development. May 10, 2019; 146 (9):                               


An Early Function of Polycystin-2 for Left-Right Organizer Induction in Xenopus., Vick P., iScience. April 27, 2018; 2 76-85.                                        


A Molecular atlas of Xenopus respiratory system development., Rankin SA, Rankin SA., Dev Dyn. January 1, 2015; 244 (1): 69-85.                    


Development of the vertebrate tailbud., Beck CW., Wiley Interdiscip Rev Dev Biol. January 1, 2015; 4 (1): 33-44.        


Xenopus laevis FGF receptor substrate 3 (XFrs3) is important for eye development and mediates Pax6 expression in lens placode through its Shp2-binding sites., Kim YJ., Dev Biol. January 1, 2015; 397 (1): 129-39.                                          


Heparanase 2, mutated in urofacial syndrome, mediates peripheral neural development in Xenopus., Roberts NA., Hum Mol Genet. August 15, 2014; 23 (16): 4302-14.                              


Xmab21l3 mediates dorsoventral patterning in Xenopus laevis., Sridharan J., Mech Dev. July 1, 2012; 129 (5-8): 136-46.                      


Identification and characterization of Xenopus kctd15, an ectodermal gene repressed by the FGF pathway., Takahashi C., Int J Dev Biol. January 1, 2012; 56 (5): 393-402.                  


Reciprocal regulation of axonal Filopodia and outgrowth during neuromuscular junction development., Li PP., PLoS One. January 1, 2012; 7 (9): e44759.              


Neural crest migration requires the activity of the extracellular sulphatases XtSulf1 and XtSulf2., Guiral EC., Dev Biol. May 15, 2010; 341 (2): 375-88.                              


FGFR3 expression in Xenopus laevis., Pope AP., Gene Expr Patterns. January 1, 2010; 10 (2-3): 87-92.      


Temporal and spatial expression of FGF ligands and receptors during Xenopus development., Lea R., Dev Dyn. June 1, 2009; 238 (6): 1467-79.                                                                                                        


Lrig3 regulates neural crest formation in Xenopus by modulating Fgf and Wnt signaling pathways., Zhao H., Development. April 1, 2008; 135 (7): 1283-93.                            


Chordin affects pronephros development in Xenopus embryos by anteriorizing presomitic mesoderm., Mitchell T., Dev Dyn. January 1, 2007; 236 (1): 251-61.          


Regulated expression of FLRT genes implies a functional role in the regulation of FGF signalling during mouse development., Haines BP., Dev Biol. September 1, 2006; 297 (1): 14-25.


Apelin, the ligand for the endothelial G-protein-coupled receptor, APJ, is a potent angiogenic factor required for normal vascular development of the frog embryo., Cox CM., Dev Biol. August 1, 2006; 296 (1): 177-89.                  


FGF signal regulates gastrulation cell movements and morphology through its target NRH., Chung HA., Dev Biol. June 1, 2005; 282 (1): 95-110.                          


FGF signal interpretation is directed by Sprouty and Spred proteins during mesoderm formation., Sivak JM., Dev Cell. May 1, 2005; 8 (5): 689-701.      


Screening of FGF target genes in Xenopus by microarray: temporal dissection of the signalling pathway using a chemical inhibitor., Chung HA., Genes Cells. August 1, 2004; 9 (8): 749-61.                            


FGFR4 signaling is a necessary step in limb muscle differentiation., Marics I., Development. October 1, 2002; 129 (19): 4559-69.  


A dynamic requirement for community interactions during Xenopus myogenesis., Standley HJ., Int J Dev Biol. May 1, 2002; 46 (3): 279-83.        


Docking protein SNT1 is a critical mediator of fibroblast growth factor signaling during Xenopus embryonic development., Akagi K., Dev Dyn. March 1, 2002; 223 (2): 216-28.                  


Expression of the novel basic-helix-loop-helix transcription factor cMespo in presomitic mesoderm of chicken embryos., Buchberger A., Mech Dev. October 1, 2000; 97 (1-2): 223-6.


Early regionalized expression of a novel Xenopus fibroblast growth factor receptor in neuroepithelium., Riou JF., Biochem Biophys Res Commun. January 5, 1996; 218 (1): 198-204.          


Molecular cloning of tyrosine kinases in the early Xenopus embryo: identification of Eck-related genes expressed in cranial neural crest cells of the second (hyoid) arch., Brändli AW., Dev Dyn. June 1, 1995; 203 (2): 119-40.                  

???pagination.result.page??? 1