Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (89) Expression Attributions Wiki
XB-ANAT-31

Papers associated with ciliated epidermal cell (and foxj1.2)

Limit to papers also referencing gene:
Show all ciliated epidermal cell papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

RNA demethylation by FTO stabilizes the FOXJ1 mRNA for proper motile ciliogenesis., Kim H., Dev Cell. April 19, 2021; 56 (8): 1118-1130.e6.                                  


Notch signaling induces either apoptosis or cell fate change in multiciliated cells during mucociliary tissue remodeling., Tasca A., Dev Cell. February 22, 2021; 56 (4): 525-539.e6.  


The FOXJ1 target Cfap206 is required for sperm motility, mucociliary clearance of the airways and brain development., Beckers A., Development. June 15, 2020; 147 (21):                                       


CDC20B is required for deuterosome-mediated centriole production in multiciliated cells., Revinski DR., Nat Commun. November 7, 2018; 9 (1): 4668.              


The evolutionary conserved FOXJ1 target gene Fam183b is essential for motile cilia in Xenopus but dispensable for ciliary function in mice., Beckers A., Sci Rep. October 2, 2018; 8 (1): 14678.            


Rfx2 Stabilizes Foxj1 Binding at Chromatin Loops to Enable Multiciliated Cell Gene Expression., Quigley IK., PLoS Genet. January 19, 2017; 13 (1): e1006538.            


What we can learn from a tadpole about ciliopathies and airway diseases: Using systems biology in Xenopus to study cilia and mucociliary epithelia., Walentek P., Genesis. January 1, 2017; 55 (1-2):       


Foxn4 promotes gene expression required for the formation of multiple motile cilia., Campbell EP., Development. December 15, 2016; 143 (24): 4654-4664.                                  


CFAP157 is a murine downstream effector of FOXJ1 that is specifically required for flagellum morphogenesis and sperm motility., Weidemann M., Development. December 15, 2016; 143 (24): 4736-4748.    


Gmnc Is a Master Regulator of the Multiciliated Cell Differentiation Program., Zhou F., Curr Biol. December 21, 2015; 25 (24): 3267-73.                


ATP4a is required for development and function of the Xenopus mucociliary epidermis - a potential model to study proton pump inhibitor-associated pneumonia., Walentek P., Dev Biol. December 15, 2015; 408 (2): 292-304.                                


miR-34/449 miRNAs are required for motile ciliogenesis by repressing cp110., Song R., Nature. June 5, 2014; 510 (7503): 115-20.                                


A secretory cell type develops alongside multiciliated cells, ionocytes and goblet cells, and provides a protective, anti-infective function in the frog embryonic mucociliary epidermis., Dubaissi E., Development. April 1, 2014; 141 (7): 1514-25.                                


A novel serotonin-secreting cell type regulates ciliary motility in the mucociliary epidermis of Xenopus tadpoles., Walentek P., Development. April 1, 2014; 141 (7): 1526-33.                        


Coordinated genomic control of ciliogenesis and cell movement by RFX2., Chung MI., Elife. January 1, 2014; 3 e01439.                                                  


Bbof1 is required to maintain cilia orientation., Chien YH., Development. August 1, 2013; 140 (16): 3468-77.


Understanding ciliated epithelia: the power of Xenopus., Werner ME., Genesis. March 1, 2012; 50 (3): 176-85.        


Multicilin promotes centriole assembly and ciliogenesis during multiciliate cell differentiation., Stubbs JL., Nat Cell Biol. January 8, 2012; 14 (2): 140-7.            


The forkhead protein Foxj1 specifies node-like cilia in Xenopus and zebrafish embryos., Stubbs JL., Nat Genet. December 1, 2008; 40 (12): 1454-60.                


Of Fox and Frogs: Fox (fork head/winged helix) transcription factors in Xenopus development., Pohl BS., Gene. January 3, 2005; 344 21-32.      

???pagination.result.page??? 1