Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (2231) Expression Attributions Wiki
XB-ANAT-3282

Papers associated with posterior hypothalamus (and prl.1)

Limit to papers also referencing gene:
Show all posterior hypothalamus papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Identification of the receptors for prolactin-releasing peptide (PrRP) and Carassius RFamide peptide (C-RFa) in chickens., Wang Y., Endocrinology. April 1, 2012; 153 (4): 1861-74.


Isolation and characterisation of prolactin-releasing peptide in chicks and its effect on prolactin release and feeding behaviour., Tachibana T., J Neuroendocrinol. January 1, 2011; 23 (1): 74-81.


A novel prolactin-like protein (PRL-L) gene in chickens and zebrafish: cloning and characterization of its tissue expression., Wanga Y., Gen Comp Endocrinol. March 1, 2010; 166 (1): 200-10.


Corticosteroids disrupt amphibian metamorphosis by complex modes of action including increased prolactin expression., Lorenz C., Comp Biochem Physiol C Toxicol Pharmacol. August 1, 2009; 150 (2): 314-21.


Xenopus Cdc42 regulates convergent extension movements during gastrulation through Wnt/Ca2+ signaling pathway., Choi SC., Dev Biol. April 15, 2002; 244 (2): 342-57.                  


Overexpression of the Xenopus tight-junction protein claudin causes randomization of the left-right body axis., Brizuela BJ., Dev Biol. February 15, 2001; 230 (2): 217-29.                


A role for xGCNF in midbrain-hindbrain patterning in Xenopus laevis., Song K., Dev Biol. September 1, 1999; 213 (1): 170-9.            


The role of paraxial protocadherin in selective adhesion and cell movements of the mesoderm during Xenopus gastrulation., Kim SH., Development. December 1, 1998; 125 (23): 4681-90.                      


Activities of the Wnt-1 class of secreted signaling factors are antagonized by the Wnt-5A class and by a dominant negative cadherin in early Xenopus development., Torres MA., J Cell Biol. June 1, 1996; 133 (5): 1123-37.              


Specification of the anteroposterior neural axis through synergistic interaction of the Wnt signaling cascade with noggin and follistatin., McGrew LL., Dev Biol. November 1, 1995; 172 (1): 337-42.    


Patterning of the neural ectoderm of Xenopus laevis by the amino-terminal product of hedgehog autoproteolytic cleavage., Lai CJ., Development. August 1, 1995; 121 (8): 2349-60.            


Zebrafish wnt8 and wnt8b share a common activity but are involved in distinct developmental pathways., Kelly GM., Development. June 1, 1995; 121 (6): 1787-99.  

???pagination.result.page??? 1