Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (2231) Expression Attributions Wiki
XB-ANAT-3282

Papers associated with posterior hypothalamus (and eef1a1)

Limit to papers also referencing gene:
Show all posterior hypothalamus papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Notum is required for neural and head induction via Wnt deacylation, oxidation, and inactivation., Zhang X., Dev Cell. March 23, 2015; 32 (6): 719-30.                                  


Evaluation of developmental toxicity and teratogenicity of diclofenac using Xenopus embryos., Chae JP., Chemosphere. February 1, 2015; 120 52-8.


A posttranscriptional mechanism that controls Ptbp1 abundance in the Xenopus epidermis., Méreau A., Mol Cell Biol. February 1, 2015; 35 (4): 758-68.              


Chibby functions in Xenopus ciliary assembly, embryonic development, and the regulation of gene expression., Shi J., Dev Biol. November 15, 2014; 395 (2): 287-98.                    


Spalt-like 4 promotes posterior neural fates via repression of pou5f3 family members in Xenopus., Young JJ., Development. April 1, 2014; 141 (8): 1683-93.                                                                


Validation of novel reference genes for RT-qPCR studies of gene expression in Xenopus tropicalis during embryonic and post-embryonic development., Dhorne-Pollet S., Dev Dyn. June 1, 2013; 242 (6): 709-17.    


Expression of pluripotency factors in larval epithelia of the frog Xenopus: evidence for the presence of cornea epithelial stem cells., Perry KJ., Dev Biol. February 15, 2013; 374 (2): 281-94.                


Imparting regenerative capacity to limbs by progenitor cell transplantation., Lin G., Dev Cell. January 14, 2013; 24 (1): 41-51.                          


Early, nonciliary role for microtubule proteins in left-right patterning is conserved across kingdoms., Lobikin M., Proc Natl Acad Sci U S A. July 31, 2012; 109 (31): 12586-91.                    


TAK1 promotes BMP4/Smad1 signaling via inhibition of erk MAPK: a new link in the FGF/BMP regulatory network., Liu C., Differentiation. April 1, 2012; 83 (4): 210-9.                  


Identification and expression analysis of GPAT family genes during early development of Xenopus laevis., Bertolesi GE., Gene Expr Patterns. January 1, 2012; 12 (7-8): 219-27.                            


Evolutionary importance of translation elongation factor eEF1A variant switching: eEF1A1 down-regulation in muscle is conserved in Xenopus but is controlled at a post-transcriptional level., Newbery HJ., Biochem Biophys Res Commun. July 22, 2011; 411 (1): 19-24.      


Novel gene ashwin functions in Xenopus cell survival and anteroposterior patterning., Patil SS., Dev Dyn. July 1, 2006; 235 (7): 1895-907.                            


xPitx1 plays a role in specifying cement gland and head during early Xenopus development., Chang W., Genesis. February 1, 2001; 29 (2): 78-90.                        


Expression pattern of BXR suggests a role for benzoate ligand-mediated signalling in hatching gland function., Heath LA., Int J Dev Biol. January 1, 2000; 44 (1): 141-4.          


The role of maternal VegT in establishing the primary germ layers in Xenopus embryos., Zhang J., Cell. August 21, 1998; 94 (4): 515-24.                


Epidermal induction and inhibition of neural fate by translation initiation factor 4AIII., Weinstein DC., Development. November 1, 1997; 124 (21): 4235-42.                  

???pagination.result.page??? 1