Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (762) Expression Attributions Wiki
XB-ANAT-18

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Dynamics and plasticity of peptidergic control centres in the retino-brain-pituitary system of Xenopus laevis., Kramer BM., Microsc Res Tech. August 1, 2001; 54 (3): 188-99.


Securin is not required for cellular viability, but is required for normal growth of mouse embryonic fibroblasts., Mei J., Curr Biol. August 7, 2001; 11 (15): 1197-201.


Differential gene expression of Xenopus Pitx1, Pitx2b and Pitx2c during cement gland, stomodeum and pituitary development., Schweickert A., Mech Dev. September 1, 2001; 107 (1-2): 191-4.    


Occurrence of neurotrophin receptors and transmitters in the developing Xenopus gut., Holmberg A., Cell Tissue Res. October 1, 2001; 306 (1): 35-47.


Intracellular calcium buffering shapes calcium oscillations in Xenopus melanotropes., Koopman WJ., Pflugers Arch. November 1, 2001; 443 (2): 250-6.


Cloning of two thyrotropin-releasing hormone receptor subtypes from a lower vertebrate (Catostomus commersoni): functional expression, gene structure, and evolution., Harder S., Gen Comp Endocrinol. November 1, 2001; 124 (2): 236-45.


Mice lacking pituitary tumor transforming gene show testicular and splenic hypoplasia, thymic hyperplasia, thrombocytopenia, aberrant cell cycle progression, and premature centromere division., Wang Z., Mol Endocrinol. November 1, 2001; 15 (11): 1870-9.


Tissue-specific expression of two structurally different estrogen receptor alpha isoforms along the female reproductive axis of an oviparous species, the rainbow trout., Menuet A., Biol Reprod. November 1, 2001; 65 (5): 1548-57.


Cannabinoid receptor CB1-like and glutamic acid decarboxylase-like immunoreactivities in the brain of Xenopus laevis., Cesa R., Cell Tissue Res. December 1, 2001; 306 (3): 391-8.


Localization of p24 putative cargo receptors in the early secretory pathway depends on the biosynthetic activity of the cell., Kuiper RP., Biochem J. December 1, 2001; 360 (Pt 2): 421-9.


Expression of the gene encoding the beta-amyloid precursor protein APP in Xenopus laevis., van den Hurk WH., Brain Res Mol Brain Res. December 16, 2001; 97 (1): 13-20.          


Embryonic expression of pituitary adenylyl cyclase-activating polypeptide and its selective type I receptor gene in the frog Xenopus laevis neural tube., Hu Z., J Comp Neurol. December 17, 2001; 441 (3): 266-75.                  


[Cardiotoxicity of lindane, a gamma isomer of hexachlorocyclohexane]., Sauviat MP., J Soc Biol. January 1, 2002; 196 (4): 339-48.


Cell type specific expression of secretory TFF peptides: colocalization with mucins and synthesis in the brain., Hoffmann W., Int Rev Cytol. January 1, 2002; 213 147-81.


Relationships between CB1 cannabinoid receptors and pituitary endocrine cells in Xenopus laevis: an immunohistochemical study., Cesa R., Gen Comp Endocrinol. January 1, 2002; 125 (1): 17-24.    


A novel human nicotinic receptor subunit, alpha10, that confers functionality to the alpha9-subunit., Sgard F., Mol Pharmacol. January 1, 2002; 61 (1): 150-9.


Cell-type-specific and selectively induced expression of members of the p24 family of putative cargo receptors., Rötter J., J Cell Sci. March 1, 2002; 115 (Pt 5): 1049-58.  


Environmental estrogens and reproductive biology in amphibians., Mosconi G., Gen Comp Endocrinol. April 1, 2002; 126 (2): 125-9.


The gonadotrophin-releasing hormone receptor: signalling, cycling and desensitisation., McArdle CA., Arch Physiol Biochem. April 1, 2002; 110 (1-2): 113-22.


Signalling, cycling and desensitisation of gonadotrophin-releasing hormone receptors., McArdle CA., J Endocrinol. April 1, 2002; 173 (1): 1-11.


Distribution and effects of PACAP, VIP, nitric oxide and GABA in the gut of the African clawed frog Xenopus laevis., Olsson C., J Exp Biol. April 1, 2002; 205 (Pt 8): 1123-34.


Evidence that brain-derived neurotrophic factor acts as an autocrine factor on pituitary melanotrope cells of Xenopus laevis., Kramer BM., Endocrinology. April 1, 2002; 143 (4): 1337-45.


Transgene-driven protein expression specific to the intermediate pituitary melanotrope cells of Xenopus laevis., Jansen EJ., FEBS Lett. April 10, 2002; 516 (1-3): 201-7.


New aspects of signal transduction in the Xenopus laevis melanotrope cell., Roubos EW., Gen Comp Endocrinol. May 1, 2002; 126 (3): 255-60.


Regulation of neurons in the suprachiasmatic nucleus of Xenopus laevis., Kramer BM., Comp Biochem Physiol B Biochem Mol Biol. May 1, 2002; 132 (1): 269-74.


Multiple control and dynamic response of the Xenopus melanotrope cell., Kolk SM., Comp Biochem Physiol B Biochem Mol Biol. May 1, 2002; 132 (1): 257-68.


TRH signal transduction in melanotrope cells of Xenopus laevis., Lieste JR., Gen Comp Endocrinol. June 1, 2002; 127 (1): 80-8.


Developmental changes in interrenal responsiveness in anuran amphibians., Glennemeier KA., Integr Comp Biol. July 1, 2002; 42 (3): 565-73.


Immunocytochemical detection of leptin in non-mammalian vertebrate stomach., Muruzábal FJ., Gen Comp Endocrinol. September 1, 2002; 128 (2): 149-52.  


Corticotropin-releasing hormone-binding protein: biochemistry and function from fishes to mammals., Seasholtz AF., J Endocrinol. October 1, 2002; 175 (1): 89-97.


Sauvagine regulates Ca2+ oscillations and electrical membrane activity of melanotrope cells of Xenopus laevis., Cornelisse LN., J Neuroendocrinol. October 1, 2002; 14 (10): 778-87.


Demonstration of postsynaptic receptor plasticity in an amphibian neuroendocrine interface., Jenks BG., J Neuroendocrinol. November 1, 2002; 14 (11): 843-5.


Automated nanoflow liquid chromatography-tandem mass spectrometry for a differential display proteomic study on Xenopus laevis neuroendocrine cells., Devreese B., J Chromatogr A. November 8, 2002; 976 (1-2): 113-21.


Comparative distributions of pituitary adenylyl cyclase-activating polypeptide and its selective type I receptor mRNA in the frog (Xenopus laevis) brain., Hu Z., Regul Pept. November 15, 2002; 109 (1-3): 15-26.


Maxadilan activates PAC1 receptors expressed in Xenopus laevis xelanophores., Pereira P., Pigment Cell Res. December 1, 2002; 15 (6): 461-6.


Comparative analysis of neuropeptide FF-like immunoreactivity in the brain of anuran (Rana perezi, Xenopus laevis) and urodele (Pleurodeles waltl) amphibians., Crespo M., J Chem Neuroanat. January 1, 2003; 25 (1): 53-71.


Alpha-melanophore-stimulating hormone in the brain, cranial placode derivatives, and retina of Xenopus laevis during development in relation to background adaptation., Kramer BM., J Comp Neurol. January 27, 2003; 456 (1): 73-83.                  


Electrical membrane activity and intracellular calcium buffering control exocytosis efficiency in Xenopus melanotrope cells., Scheenen WJ., Neuroendocrinology. March 1, 2003; 77 (3): 153-61.


Differential distribution of melatonin receptors in the pituitary gland of Xenopus laevis., Wiechmann AF., Anat Embryol (Berl). March 1, 2003; 206 (4): 291-9.


Regulation of the rat follicle-stimulating hormone beta-subunit promoter by activin., Suszko MI., Mol Endocrinol. March 1, 2003; 17 (3): 318-32.


Microtransplantation of membranes from cultured cells to Xenopus oocytes: a method to study neurotransmitter receptors embedded in native lipids., Palma E., Proc Natl Acad Sci U S A. March 4, 2003; 100 (5): 2896-900.


Direct cAMP signaling through G-protein-coupled receptors mediates growth cone attraction induced by pituitary adenylate cyclase-activating polypeptide., Guirland C., J Neurosci. March 15, 2003; 23 (6): 2274-83.


Co-localization of mesotocin and opsin immunoreactivity in the hypothalamic preoptic nucleus of Xenopus laevis., Alvarez-Viejo M., Brain Res. April 18, 2003; 969 (1-2): 36-43.                


Ca2+ oscillations in melanotropes of Xenopus laevis: their generation, propagation, and function., Jenks BG., Gen Comp Endocrinol. May 1, 2003; 131 (3): 209-19.


The left-right determinant Inversin is a component of node monocilia and other 9+0 cilia., Watanabe D., Development. May 1, 2003; 130 (9): 1725-34.


Expression and characterization of the extracellular Ca(2+)-sensing receptor in melanotrope cells of Xenopus laevis., van den Hurk MJ., Endocrinology. June 1, 2003; 144 (6): 2524-33.


Xenopus laevis CB1 cannabinoid receptor: molecular cloning and mRNA distribution in the central nervous system., Cottone E., J Comp Neurol. September 29, 2003; 464 (4): 487-96.        


Role of cortical filamentous actin in the melanotrope cell of Xenopus laevis., Corstens GJ., Gen Comp Endocrinol. November 1, 2003; 134 (2): 95-102.


Loss-of-function mutations in the human GLI2 gene are associated with pituitary anomalies and holoprosencephaly-like features., Roessler E., Proc Natl Acad Sci U S A. November 11, 2003; 100 (23): 13424-9.          


Identification of BOIP, a novel cDNA highly expressed during spermatogenesis that encodes a protein interacting with the orange domain of the hairy-related transcription factor HRT1/Hey1 in Xenopus and mouse., Van Wayenbergh R., Dev Dyn. December 1, 2003; 228 (4): 716-25.      

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ???pagination.result.next???