Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (350) Expression Attributions Wiki
XB-ANAT-1607

Papers associated with vegetal pole

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Early amphibian (anuran) morphogenesis is sensitive to novel gravitational fields., Neff AW., Dev Biol. January 1, 1993; 155 (1): 270-4.


A mRNA localized to the vegetal cortex of Xenopus oocytes encodes a protein with a nanos-like zinc finger domain., Mosquera L., Development. January 1, 1993; 117 (1): 377-86.              


Integrin alpha subunit mRNAs are differentially expressed in early Xenopus embryos., Whittaker CA., Development. April 1, 1993; 117 (4): 1239-49.          


Occurrence of dorsal axis-inducing activity around the vegetal pole of an uncleaved Xenopus egg and displacement to the equatorial region by cortical rotation., Fujisue M., Development. May 1, 1993; 118 (1): 163-70.      


Dynamics of germ plasm localization and its inhibition by ultraviolet irradiation in early cleavage Xenopus embryos., Savage RM., Dev Biol. June 1, 1993; 157 (2): 371-82.          


Catenins in Xenopus embryogenesis and their relation to the cadherin-mediated cell-cell adhesion system., Schneider S., Development. June 1, 1993; 118 (2): 629-40.                    


Xenopus axis formation: induction of goosecoid by injected Xwnt-8 and activin mRNAs., Steinbeisser H., Development. June 1, 1993; 118 (2): 499-507.          


Cortical cytoplasm, which induces dorsal axis formation in Xenopus, is inactivated by UV irradiation of the oocyte., Holowacz T., Development. September 1, 1993; 119 (1): 277-85.          


Distinct elements of the xsna promoter are required for mesodermal and ectodermal expression., Mayor R., Development. November 1, 1993; 119 (3): 661-71.                  


Xwnt-11: a maternally expressed Xenopus wnt gene., Ku M., Development. December 1, 1993; 119 (4): 1161-73.              


XFKH2, a Xenopus HNF-3 alpha homologue, exhibits both activin-inducible and autonomous phases of expression in early embryos., Bolce ME., Dev Biol. December 1, 1993; 160 (2): 413-23.              


Pre-steady-state transient currents mediated by the Na/K pump in internally perfused Xenopus oocytes., Holmgren M., Biophys J. March 1, 1994; 66 (3 Pt 1): 912-22.


Vertical versus planar neural induction in Rana pipiens embryos., Saint-Jeannet JP., Proc Natl Acad Sci U S A. April 12, 1994; 91 (8): 3049-53.        


A role for cytoplasmic determinants in mesoderm patterning: cell-autonomous activation of the goosecoid and Xwnt-8 genes along the dorsoventral axis of early Xenopus embryos., Lemaire P., Development. May 1, 1994; 120 (5): 1191-9.          


Vg1 and regional specification in vertebrates: a new role for an old molecule., Vize PD., Trends Genet. October 1, 1994; 10 (10): 371-6.


The pregastrula establishment of gene expression pattern in Xenopus embryos: requirements for local cell interactions and for protein synthesis., Sokol SY., Dev Biol. December 1, 1994; 166 (2): 782-8.


Patterns of localization and cytoskeletal association of two vegetally localized RNAs, Vg1 and Xcat-2., Forristall C., Development. January 1, 1995; 121 (1): 201-8.          


Estimation of water content and water mobility in the nucleus and cytoplasm of Xenopus laevis oocytes by NMR microscopy., Päuser S., Magn Reson Imaging. January 1, 1995; 13 (2): 269-76.


Homology between mitochondriogenesis in the avian and amphibian oocyte., D'Herde K., Reprod Nutr Dev. January 1, 1995; 35 (3): 305-11.


Two distinct pathways for the localization of RNAs at the vegetal cortex in Xenopus oocytes., Kloc M., Development. February 1, 1995; 121 (2): 287-97.              


Induction of the prospective neural crest of Xenopus., Mayor R., Development. March 1, 1995; 121 (3): 767-77.                  


XIPOU 2, a noggin-inducible gene, has direct neuralizing activity., Witta SE., Development. March 1, 1995; 121 (3): 721-30.                


Amphibian development in the virtual absence of gravity., Souza KA., Proc Natl Acad Sci U S A. March 14, 1995; 92 (6): 1975-8.    


Anterior neurectoderm is progressively induced during gastrulation: the role of the Xenopus homeobox gene orthodenticle., Blitz IL., Development. April 1, 1995; 121 (4): 993-1004.              


A type 1 serine/threonine kinase receptor that can dorsalize mesoderm in Xenopus., Mahony D., Proc Natl Acad Sci U S A. July 3, 1995; 92 (14): 6474-8.          


Expression of membrane targeted aequorin in Xenopus laevis oocytes., Daguzan C., Int J Dev Biol. August 1, 1995; 39 (4): 653-7.


Autonomous endodermal determination in Xenopus: regulation of expression of the pancreatic gene XlHbox 8., Gamer LW., Dev Biol. September 1, 1995; 171 (1): 240-51.                


Interaction between paramagnetic metal complexes and intracellular water of single cells., Päuser S., J Magn Reson Imaging. January 1, 1996; 6 (1): 250-4.


TGF-beta signals and a pattern in Xenopus laevis endodermal development., Henry GL., Development. March 1, 1996; 122 (3): 1007-15.          


Primary sequence and developmental expression pattern of mRNAs and protein for an alpha1 subunit of the sodium pump cloned from the neural plate of Xenopus laevis., Davies CS., Dev Biol. March 15, 1996; 174 (2): 431-47.                  


Confocal microscopy analysis of living Xenopus eggs and the mechanism of cortical rotation., Larabell CA., Development. April 1, 1996; 122 (4): 1281-9.                  


Exogenous tau RNA is localized in oocytes: possible evidence for evolutionary conservation of localization mechanisms., Litman P., Dev Biol. May 25, 1996; 176 (1): 86-94.        


Mesoderm and endoderm differentiation in animal cap explants: identification of the HNF4-binding site as an activin A responsive element in the Xenopus HNF1alpha promoter., Weber H., Development. June 1, 1996; 122 (6): 1975-84.              


Xenopus embryonic cell adhesion to fibronectin: position-specific activation of RGD/synergy site-dependent migratory behavior at gastrulation., Ramos JW., J Cell Biol. July 1, 1996; 134 (1): 227-40.


The vegetal determinants required for the Spemann organizer move equatorially during the first cell cycle., Sakai M., Development. July 1, 1996; 122 (7): 2207-14.                


Neural crest formation in Xenopus laevis: mechanisms of Xslug induction., Mancilla A., Dev Biol. August 1, 1996; 177 (2): 580-9.        


Localization of Xcat-2 RNA, a putative germ plasm component, to the mitochondrial cloud in Xenopus stage I oocytes., Zhou Y., Development. September 1, 1996; 122 (9): 2947-53.        


The mRNA encoding a beta subunit of heterotrimeric GTP-binding proteins is localized to the animal pole of Xenopus laevis oocyte and embryos., Devic E., Mech Dev. October 1, 1996; 59 (2): 141-51.              


The Xvent-2 homeobox gene is part of the BMP-4 signalling pathway controlling [correction of controling] dorsoventral patterning of Xenopus mesoderm., Onichtchouk D., Development. October 1, 1996; 122 (10): 3045-53.                  


RNA transport to the vegetal cortex of Xenopus oocytes., Zhou Y., Dev Biol. October 10, 1996; 179 (1): 173-83.            


Xenopus VegT RNA is localized to the vegetal cortex during oogenesis and encodes a novel T-box transcription factor involved in mesodermal patterning., Zhang J., Development. December 1, 1996; 122 (12): 4119-29.                  


Location and behavior of dorsal determinants during first cell cycle in Xenopus eggs., Kikkawa M., Development. December 1, 1996; 122 (12): 3687-96.                      


Microtubule disruption reveals that Spemann's organizer is subdivided into two domains by the vegetal alignment zone., Lane MC., Development. February 1, 1997; 124 (4): 895-906.                


Microtubule-mediated transport of organelles and localization of beta-catenin to the future dorsal side of Xenopus eggs., Rowning BA., Proc Natl Acad Sci U S A. February 18, 1997; 94 (4): 1224-9.


Localization of MAP kinase activity in early Xenopus embryos: implications for endogenous FGF signaling., LaBonne C., Dev Biol. March 1, 1997; 183 (1): 9-20.


Establishment of the dorso-ventral axis in Xenopus embryos is presaged by early asymmetries in beta-catenin that are modulated by the Wnt signaling pathway., Larabell CA., J Cell Biol. March 10, 1997; 136 (5): 1123-36.                


Activation of dorsal development by contact between the cortical dorsal determinant and the equatorial core cytoplasm in eggs of Xenopus laevis., Kageura H., Development. April 1, 1997; 124 (8): 1543-51.            


The role of planar and early vertical signaling in patterning the expression of Hoxb-1 in Xenopus., Poznanski A., Dev Biol. April 15, 1997; 184 (2): 351-66.                


A vegetally localized T-box transcription factor in Xenopus eggs specifies mesoderm and endoderm and is essential for embryonic mesoderm formation., Horb ME., Development. May 1, 1997; 124 (9): 1689-98.                    


Ets-1 and Ets-2 proto-oncogenes exhibit differential and restricted expression patterns during Xenopus laevis oogenesis and embryogenesis., Meyer D., Int J Dev Biol. August 1, 1997; 41 (4): 607-20.                                      

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 ???pagination.result.next???