Transcriptional regulator PRDM12 is essential for human pain perception. , Chen YC ., Nat Genet. July 1, 2015; 47 (7): 803-8.
BMP signalling controls the construction of vertebrate mucociliary epithelia. , Cibois M., Development. July 1, 2015; 142 (13): 2352-63.
Mesodermal origin of median fin mesenchyme and tail muscle in amphibian larvae. , Taniguchi Y., Sci Rep. June 18, 2015; 5 11428.
On the origin of vertebrate somites. , Onai T., Zoological Lett. June 15, 2015; 1 33.
The dynamics of plus end polarization and microtubule assembly during Xenopus cortical rotation. , Olson DJ., Dev Biol. May 15, 2015; 401 (2): 249-63.
Identification of REST targets in the Xenopus tropicalis genome. , Saritas-Yildirim B., BMC Genomics. May 14, 2015; 16 380.
The Inner Nuclear Membrane Protein Nemp1 Is a New Type of RanGTP-Binding Protein in Eukaryotes. , Shibano T., PLoS One. May 6, 2015; 10 (5): e0127271.
ERK7 regulates ciliogenesis by phosphorylating the actin regulator CapZIP in cooperation with Dishevelled. , Miyatake K., Nat Commun. March 31, 2015; 6 6666.
Notum is required for neural and head induction via Wnt deacylation, oxidation, and inactivation. , Zhang X., Dev Cell. March 23, 2015; 32 (6): 719-30.
PAPC mediates self/non-self-distinction during Snail1-dependent tissue separation. , Luu O., J Cell Biol. March 16, 2015; 208 (6): 839-56.
The serpin PN1 is a feedback regulator of FGF signaling in germ layer and primary axis formation. , Acosta H., Development. March 15, 2015; 142 (6): 1146-58.
TRPP2-dependent Ca2+ signaling in dorso- lateral mesoderm is required for kidney field establishment in Xenopus. , Futel M., J Cell Sci. March 1, 2015; 128 (5): 888-99.
Snail2/ Slug cooperates with Polycomb repressive complex 2 (PRC2) to regulate neural crest development. , Tien CL., Development. February 15, 2015; 142 (4): 722-31.
A distinct mechanism of vascular lumen formation in Xenopus requires EGFL7. , Charpentier MS., PLoS One. February 6, 2015; 10 (2): e0116086.
Generation of BAC transgenic tadpoles enabling live imaging of motoneurons by using the urotensin II-related peptide (ust2b) gene as a driver. , Bougerol M., PLoS One. February 6, 2015; 10 (2): e0117370.
Microarray identification of novel genes downstream of Six1, a critical factor in cranial placode, somite, and kidney development. , Yan B ., Dev Dyn. February 1, 2015; 244 (2): 181-210.
Chronic sublethal exposure to silver nanoparticles disrupts thyroid hormone signaling during Xenopus laevis metamorphosis. , Carew AC., Aquat Toxicol. February 1, 2015; 159 99-108.
A posttranscriptional mechanism that controls Ptbp1 abundance in the Xenopus epidermis. , Méreau A., Mol Cell Biol. February 1, 2015; 35 (4): 758-68.
Leiomodin 3 and tropomodulin 4 have overlapping functions during skeletal myofibrillogenesis. , Nworu CU., J Cell Sci. January 15, 2015; 128 (2): 239-50.
Sox21 regulates the progression of neuronal differentiation in a dose-dependent manner. , Whittington N., Dev Biol. January 15, 2015; 397 (2): 237-47.
Pax8 and Pax2 are specifically required at different steps of Xenopus pronephros development. , Buisson I ., Dev Biol. January 15, 2015; 397 (2): 175-90.
Heat shock 70-kDa protein 5 ( Hspa5) is essential for pronephros formation by mediating retinoic acid signaling. , Shi W., J Biol Chem. January 2, 2015; 290 (1): 577-89.
Aminolevulinate synthase 2 mediates erythrocyte differentiation by regulating larval globin expression during Xenopus primary hematopoiesis. , Ogawa-Otomo A., Biochem Biophys Res Commun. January 2, 2015; 456 (1): 476-81.
Development of the vertebrate tailbud. , Beck CW ., Wiley Interdiscip Rev Dev Biol. January 1, 2015; 4 (1): 33-44.
Xenopus laevis FGF receptor substrate 3 (XFrs3) is important for eye development and mediates Pax6 expression in lens placode through its Shp2-binding sites. , Kim YJ., Dev Biol. January 1, 2015; 397 (1): 129-39.
Temporal and spatial expression analysis of peripheral myelin protein 22 ( Pmp22) in developing Xenopus. , Tae HJ., Gene Expr Patterns. January 1, 2015; 17 (1): 26-30.
The Rac1 regulator ELMO controls basal body migration and docking in multiciliated cells through interaction with Ezrin. , Epting D., Development. January 1, 2015; 142 (1): 174-84.
Unique gene expression profile of the proliferating Xenopus tadpole tail blastema cells deciphered by RNA-sequencing analysis. , Tsujioka H., PLoS One. January 1, 2015; 10 (3): e0111655.
The evolutionarily conserved transcription factor PRDM12 controls sensory neuron development and pain perception. , Nagy V., Cell Cycle. January 1, 2015; 14 (12): 1799-808.
Comparative expression analysis of pfdn6a and tcp1α during Xenopus development. , Marracci S ., Int J Dev Biol. January 1, 2015; 59 (4-6): 235-40.
Developmental expression of the N- myc downstream regulated gene (Ndrg) family during Xenopus tropicalis embryogenesis. , Zhong C., Int J Dev Biol. January 1, 2015; 59 (10-12): 511-7.
GSK3 and Polo-like kinase regulate ADAM13 function during cranial neural crest cell migration. , Abbruzzese G ., Mol Biol Cell. December 15, 2014; 25 (25): 4072-82.
Transcriptional regulators in the Hippo signaling pathway control organ growth in Xenopus tadpole tail regeneration. , Hayashi S., Dev Biol. December 1, 2014; 396 (1): 31-41.
Xhe2 is a member of the astacin family of metalloproteases that promotes Xenopus hatching. , Hong CS ., Genesis. December 1, 2014; 52 (12): 946-51.
Genome-wide view of TGFβ/ Foxh1 regulation of the early mesendoderm program. , Chiu WT ., Development. December 1, 2014; 141 (23): 4537-47.
Fezf2 promotes neuronal differentiation through localised activation of Wnt/ β-catenin signalling during forebrain development. , Zhang S ., Development. December 1, 2014; 141 (24): 4794-805.
Xenopus mutant reveals necessity of rax for specifying the eye field which otherwise forms tissue with telencephalic and diencephalic character. , Fish MB., Dev Biol. November 15, 2014; 395 (2): 317-330.
Sox5 Is a DNA-binding cofactor for BMP R-Smads that directs target specificity during patterning of the early ectoderm. , Nordin K., Dev Cell. November 10, 2014; 31 (3): 374-382.
FAK is required for tension-dependent organization of collective cell movements in Xenopus mesendoderm. , Bjerke MA., Dev Biol. October 15, 2014; 394 (2): 340-56.
Characterization of the Rx1-dependent transcriptome during early retinal development. , Giudetti G., Dev Dyn. October 1, 2014; 243 (10): 1352-61.
Down syndrome cell adhesion molecule ( DSCAM) is important for early development in Xenopus tropicalis. , Morales Diaz HD ., Genesis. October 1, 2014; .
The splicing factor PQBP1 regulates mesodermal and neural development through FGF signaling. , Iwasaki Y ., Development. October 1, 2014; 141 (19): 3740-51.
Transcription factor AP2 epsilon ( Tfap2e) regulates neural crest specification in Xenopus. , Hong CS ., Dev Neurobiol. September 1, 2014; 74 (9): 894-906.
Gtpbp2 is required for BMP signaling and mesoderm patterning in Xenopus embryos. , Kirmizitas A., Dev Biol. August 15, 2014; 392 (2): 358-67.
NEDD4L regulates convergent extension movements in Xenopus embryos via Disheveled-mediated non-canonical Wnt signaling. , Zhang Y ., Dev Biol. August 1, 2014; 392 (1): 15-25.
Temperature-independent energy expenditure in early development of the African clawed frog Xenopus laevis. , Nagano Y., Phys Biol. August 1, 2014; 11 (4): 046008.
Diverse functions of kindlin/fermitin proteins during embryonic development in Xenopus laevis. , Rozario T., Mech Dev. August 1, 2014; 133 203-17.
Occupancy of tissue-specific cis-regulatory modules by Otx2 and TLE/Groucho for embryonic head specification. , Yasuoka Y ., Nat Commun. July 9, 2014; 5 4322.
Maternal syntabulin is required for dorsal axis formation and is a germ plasm component in Xenopus. , Colozza G ., Differentiation. July 1, 2014; 88 (1): 17-26.
IRE1α knockdown rescues tunicamycin-induced developmental defects and apoptosis in Xenopus laevis. , Yuan L., J Biomed Res. July 1, 2014; 28 (4): 275-81.