Results 1 - 50 of 158 results
Systematic mapping of rRNA 2'-O methylation during frog development and involvement of the methyltransferase Fibrillarin in eye and craniofacial development in Xenopus laevis. , Delhermite J ., PLoS Genet. January 18, 2022; 18 (1): e1010012.
Xenopus SOX5 enhances myogenic transcription indirectly through transrepression. , Della Gaspera B ., Dev Biol. October 15, 2018; 442 (2): 262-275.
Spiral waves and vertebrate embryonic handedness. , Durston AJ ., J Biosci. June 1, 2018; 43 (2): 375-390.
Xenopus pitx3 target genes lhx1 and xnr5 are identified using a novel three-fluor flow cytometry-based analysis of promoter activation and repression. , Hooker LN., Dev Dyn. September 1, 2017; 246 (9): 657-669.
Similarity in gene-regulatory networks suggests that cancer cells share characteristics of embryonic neural cells. , Zhang Z ., J Biol Chem. August 4, 2017; 292 (31): 12842-12859.
RARβ2 is required for vertebrate somitogenesis. , Janesick A ., Development. June 1, 2017; 144 (11): 1997-2008.
Folate receptor 1 is necessary for neural plate cell apical constriction during Xenopus neural tube formation. , Balashova OA., Development. April 15, 2017; 144 (8): 1518-1530.
Spemann organizer transcriptome induction by early beta-catenin, Wnt, Nodal, and Siamois signals in Xenopus laevis. , Ding Y ., Proc Natl Acad Sci U S A. April 11, 2017; 114 (15): E3081-E3090.
On the origin of vertebrate somites. , Onai T., Zoological Lett. June 15, 2015; 1 33.
Klhl31 attenuates β-catenin dependent Wnt signaling and regulates embryo myogenesis. , Abou-Elhamd A., Dev Biol. June 1, 2015; 402 (1): 61-71.
The alternative splicing regulator Tra2b is required for somitogenesis and regulates splicing of an inhibitory Wnt11b isoform. , Dichmann DS ., Cell Rep. February 3, 2015; 10 (4): 527-36.
Leiomodin 3 and tropomodulin 4 have overlapping functions during skeletal myofibrillogenesis. , Nworu CU., J Cell Sci. January 15, 2015; 128 (2): 239-50.
Cholesterol selectively activates canonical Wnt signalling over non-canonical Wnt signalling. , Sheng R., Nat Commun. July 15, 2014; 5 4393.
Active repression by RARγ signaling is required for vertebrate axial elongation. , Janesick A ., Development. June 1, 2014; 141 (11): 2260-70.
Spalt-like 4 promotes posterior neural fates via repression of pou5f3 family members in Xenopus. , Young JJ ., Development. April 1, 2014; 141 (8): 1683-93.
An essential role for LPA signalling in telencephalon development. , Geach TJ ., Development. February 1, 2014; 141 (4): 940-9.
Circadian genes, xBmal1 and xNocturnin, modulate the timing and differentiation of somites in Xenopus laevis. , Curran KL ., PLoS One. January 1, 2014; 9 (9): e108266.
Expression pattern of zcchc24 during early Xenopus development. , Vitorino M., Int J Dev Biol. January 1, 2014; 58 (1): 45-50.
Ephrin-Eph signaling in embryonic tissue separation. , Fagotto F ., Cell Adh Migr. January 1, 2014; 8 (4): 308-26.
Chordin forms a self-organizing morphogen gradient in the extracellular space between ectoderm and mesoderm in the Xenopus embryo. , Plouhinec JL., Proc Natl Acad Sci U S A. December 17, 2013; 110 (51): 20372-9.
A molecular base for cell sorting at embryonic boundaries: contact inhibition of cadherin adhesion by ephrin/ Eph-dependent contractility. , Fagotto F ., Dev Cell. October 14, 2013; 27 (1): 72-87.
In vivo T-box transcription factor profiling reveals joint regulation of embryonic neuromesodermal bipotency. , Gentsch GE ., Cell Rep. September 26, 2013; 4 (6): 1185-96.
Comparative Functional Analysis of ZFP36 Genes during Xenopus Development. , Tréguer K., PLoS One. January 1, 2013; 8 (1): e54550.
Variation in the schedules of somite and neural development in frogs. , Sáenz-Ponce N., Proc Natl Acad Sci U S A. December 11, 2012; 109 (50): 20503-7.
Kcnh1 voltage-gated potassium channels are essential for early zebrafish development. , Stengel R., J Biol Chem. October 12, 2012; 287 (42): 35565-35575.
Microarray-based identification of Pitx3 targets during Xenopus embryogenesis. , Hooker L., Dev Dyn. September 1, 2012; 241 (9): 1487-505.
Myogenic waves and myogenic programs during Xenopus embryonic myogenesis. , Della Gaspera B ., Dev Dyn. May 1, 2012; 241 (5): 995-1007.
The RNA-binding protein XSeb4R regulates maternal Sox3 at the posttranscriptional level during maternal-zygotic transition in Xenopus. , Bentaya S., Dev Biol. March 15, 2012; 363 (2): 362-72.
Somitogenesis in the anole lizard and alligator reveals evolutionary convergence and divergence in the amniote segmentation clock. , Eckalbar WL., Dev Biol. March 1, 2012; 363 (1): 308-19.
Comparative expression analysis of the H3K27 demethylases, JMJD3 and UTX, with the H3K27 methylase, EZH2, in Xenopus. , Kawaguchi A., Int J Dev Biol. January 1, 2012; 56 (4): 295-300.
A homolog of Subtilisin-like Proprotein Convertase 7 is essential to anterior neural development in Xenopus. , Senturker S., PLoS One. January 1, 2012; 7 (6): e39380.
Mef2d acts upstream of muscle identity genes and couples lateral myogenesis to dermomyotome formation in Xenopus laevis. , Della Gaspera B ., PLoS One. January 1, 2012; 7 (12): e52359.
EBF proteins participate in transcriptional regulation of Xenopus muscle development. , Green YS., Dev Biol. October 1, 2011; 358 (1): 240-50.
The cellular basis for animal regeneration. , Tanaka EM ., Dev Cell. July 19, 2011; 21 (1): 172-85.
The transcriptional coactivators Yap and TAZ are expressed during early Xenopus development. , Nejigane S., Int J Dev Biol. January 1, 2011; 55 (1): 121-6.
Wnt/beta-catenin signaling is involved in the induction and maintenance of primitive hematopoiesis in the vertebrate embryo. , Tran HT., Proc Natl Acad Sci U S A. September 14, 2010; 107 (37): 16160-5.
A random cell motility gradient downstream of FGF controls elongation of an amniote embryo. , Bénazéraf B., Nature. July 8, 2010; 466 (7303): 248-52.
Temporal and spatial patterning of axial myotome fibers in Xenopus laevis. , Krneta-Stankic V., Dev Dyn. April 1, 2010; 239 (4): 1162-77.
The F-box protein Cdc4/ Fbxw7 is a novel regulator of neural crest development in Xenopus laevis. , Almeida AD., Neural Dev. January 4, 2010; 5 1.
Differential expression of the Brunol/CELF family genes during Xenopus laevis early development. , Wu J ., Int J Dev Biol. January 1, 2010; 54 (1): 209-14.
A conserved MRF4 promoter drives transgenic expression in Xenopus embryonic somites and adult muscle. , Hinterberger TJ ., Int J Dev Biol. January 1, 2010; 54 (4): 617-25.
Downstream of FGF during mesoderm formation in Xenopus: the roles of Elk-1 and Egr-1. , Nentwich O., Dev Biol. December 15, 2009; 336 (2): 313-26.
Cyclic Nrarp mRNA expression is regulated by the somitic oscillator but Nrarp protein levels do not oscillate. , Wright D ., Dev Dyn. December 1, 2009; 238 (12): 3043-3055.
Molecular analyses of Xenopus laevis Mesp-related genes. , Hitachi K ., Integr Zool. December 1, 2009; 4 (4): 387-94.
Xenopus Rnd1 and Rnd3 GTP-binding proteins are expressed under the control of segmentation clock and required for somite formation. , Goda T., Dev Dyn. November 1, 2009; 238 (11): 2867-76.
Normal levels of p27 are necessary for somite segmentation and determining pronephric organ size. , Naylor RW., Organogenesis. October 1, 2009; 5 (4): 201-10.
Diversification of the expression patterns and developmental functions of the dishevelled gene family during chordate evolution. , Gray RS ., Dev Dyn. August 1, 2009; 238 (8): 2044-57.
In vivo analyzes of dystroglycan function during somitogenesis in Xenopus laevis. , Hidalgo M., Dev Dyn. June 1, 2009; 238 (6): 1332-45.
Beyond early development: Xenopus as an emerging model for the study of regenerative mechanisms. , Beck CW ., Dev Dyn. June 1, 2009; 238 (6): 1226-48.
Temporal and spatial expression of FGF ligands and receptors during Xenopus development. , Lea R., Dev Dyn. June 1, 2009; 238 (6): 1467-79.