Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (4908) Expression Attributions Wiki
XB-ANAT-3713

Papers associated with left (and runx1)

Limit to papers also referencing gene:
Show all left papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Developmental regulation of cellular metabolism is required for intestinal elongation and rotation., Grzymkowski JK., Development. February 15, 2024; 151 (4):   


Human SLFN5 and its Xenopus Laevis ortholog regulate entry into mitosis and oocyte meiotic resumption., Vit G., Cell Death Discov. December 8, 2022; 8 (1): 484.   


Uncoupling the BMP receptor antagonist function from the WNT agonist function of R-spondin 2 using the inhibitory peptide dendrimer RWd., Lee H, Lee H., J Biol Chem. February 1, 2022; 298 (2): 101586.   


Fibroblast dedifferentiation as a determinant of successful regeneration., Lin TY., Dev Cell. May 17, 2021; 56 (10): 1541-1551.e6.   


Etv6 activates vegfa expression through positive and negative transcriptional regulatory networks in Xenopus embryos., Li L., Nat Commun. March 6, 2019; 10 (1): 1083.   


The b-HLH transcription factor Hes3 participates in neural plate border formation by interfering with Wnt/β-catenin signaling., Hong CS., Dev Biol. October 1, 2018; 442 (1): 162-172.   


interleukin-11 induces and maintains progenitors of different cell lineages during Xenopus tadpole tail regeneration., Tsujioka H., Nat Commun. September 8, 2017; 8 (1): 495.   


Conserved gene regulatory module specifies lateral neural borders across bilaterians., Li Y., Proc Natl Acad Sci U S A. August 1, 2017; 114 (31): E6352-E6360.   


The NOTCH1/SNAIL1/MEF2C Pathway Regulates Growth and Self-Renewal in Embryonal Rhabdomyosarcoma., Ignatius MS., Cell Rep. June 13, 2017; 19 (11): 2304-2318.   


Dissecting BMP signaling input into the gene regulatory networks driving specification of the blood stem cell lineage., Kirmizitas A., Proc Natl Acad Sci U S A. June 6, 2017; 114 (23): 5814-5821.   


VENTX induces expansion of primitive erythroid cells and contributes to the development of acute myeloid leukemia in mice., Gentner E., Oncotarget. December 27, 2016; 7 (52): 86889-86901.   


The positive transcriptional elongation factor (P-TEFb) is required for neural crest specification., Hatch VL., Dev Biol. August 15, 2016; 416 (2): 361-72.   


Transcription factor AP2 epsilon (Tfap2e) regulates neural crest specification in Xenopus., Hong CS., Dev Neurobiol. September 1, 2014; 74 (9): 894-906.   


Six1 is a key regulator of the developmental and evolutionary architecture of sensory neurons in craniates., Yajima H., BMC Biol. May 29, 2014; 12 40.   


Regulation of neurogenesis by Fgf8a requires Cdc42 signaling and a novel Cdc42 effector protein., Hulstrand AM., Dev Biol. October 15, 2013; 382 (2): 385-99.   


MiR-142-3p controls the specification of definitive hemangioblasts during ontogeny., Nimmo R., Dev Cell. August 12, 2013; 26 (3): 237-49.   


MRAS GTPase is a novel stemness marker that impacts mouse embryonic stem cell plasticity and Xenopus embryonic cell fate., Mathieu ME., Development. August 1, 2013; 140 (16): 3311-22.   


VEGFA-dependent and -independent pathways synergise to drive Scl expression and initiate programming of the blood stem cell lineage in Xenopus., Ciau-Uitz A., Development. June 1, 2013; 140 (12): 2632-42.   


Regulation of primitive hematopoiesis by class I histone deacetylases., Shah RR., Dev Dyn. February 1, 2013; 242 (2): 108-21.   


Uncoupling VEGFA functions in arteriogenesis and hematopoietic stem cell specification., Leung A., Dev Cell. January 28, 2013; 24 (2): 144-58.   


The Xenopus doublesex-related gene Dmrt5 is required for olfactory placode neurogenesis., Parlier D., Dev Biol. January 1, 2013; 373 (1): 39-52.   


Hippo signaling components, Mst1 and Mst2, act as a switch between self-renewal and differentiation in Xenopus hematopoietic and endothelial progenitors., Nejigane S., Int J Dev Biol. January 1, 2013; 57 (5): 407-14.   


SHP-2 acts via ROCK to regulate the cardiac actin cytoskeleton., Langdon Y., Development. March 1, 2012; 139 (5): 948-57.   


Xaml1/Runx1 is required for the specification of Rohon-Beard sensory neurons in Xenopus., Park BY., Dev Biol. February 1, 2012; 362 (1): 65-75.   


PAPC and the Wnt5a/Ror2 pathway control the invagination of the otic placode in Xenopus., Jung B., BMC Dev Biol. June 10, 2011; 11 36.   


EBF factors drive expression of multiple classes of target genes governing neuronal development., Green YS., Neural Dev. April 30, 2011; 6 19.   


HoxA3 is an apical regulator of haemogenic endothelium., Iacovino M., Nat Cell Biol. January 1, 2011; 13 (1): 72-8.   


Xenopus er71 is involved in vascular development., Neuhaus H., Dev Dyn. December 1, 2010; 239 (12): 3436-45.   


Expression analysis of Runx3 and other Runx family members during Xenopus development., Park BY., Gene Expr Patterns. June 1, 2010; 10 (4-5): 159-66.   


Tel1/ETV6 specifies blood stem cells through the agency of VEGF signaling., Ciau-Uitz A., Dev Cell. April 20, 2010; 18 (4): 569-78.   


ETS family protein ETV2 is required for initiation of the endothelial lineage but not the hematopoietic lineage in the Xenopus embryo., Salanga MC., Dev Dyn. April 1, 2010; 239 (4): 1178-87.   


Genetic control of hematopoietic development in Xenopus and zebrafish., Ciau-Uitz A., Int J Dev Biol. January 1, 2010; 54 (6-7): 1139-49.   


Coordinating the timing of cardiac precursor development during gastrulation: a new role for Notch signaling., Miazga CM., Dev Biol. September 15, 2009; 333 (2): 285-96.   


Fli1 acts at the top of the transcriptional network driving blood and endothelial development., Liu F., Curr Biol. August 26, 2008; 18 (16): 1234-40.   


Expression of synaptic vesicle two-related protein SVOP in the developing nervous system of Xenopus laevis., Logan MA., Dev Dyn. November 1, 2005; 234 (3): 802-7.   


Cooperative requirement of the Gli proteins in neurogenesis., Nguyen V., Development. July 1, 2005; 132 (14): 3267-79.   


Evi-1 expression in Xenopus., Mead PE., Gene Expr Patterns. June 1, 2005; 5 (5): 601-8.   


Adult and embryonic blood and endothelium derive from distinct precursor populations which are differentially programmed by BMP in Xenopus., Walmsley M., Development. December 1, 2002; 129 (24): 5683-95.   


XETOR regulates the size of the proneural domain during primary neurogenesis in Xenopus laevis., Cao Y., Mech Dev. November 1, 2002; 119 (1): 35-44.   


XPOX2-peroxidase expression and the XLURP-1 promoter reveal the site of embryonic myeloid cell development in Xenopus., Smith SJ., Mech Dev. September 1, 2002; 117 (1-2): 173-86.   


Role of the thrombopoietin (TPO)/Mpl system: c-Mpl-like molecule/TPO signaling enhances early hematopoiesis in Xenopus laevis., Kakeda M., Dev Growth Differ. February 1, 2002; 44 (1): 63-75.   


The bHLH factors Xath5 and XNeuroD can upregulate the expression of XBrn3d, a POU-homeodomain transcription factor., Hutcheson DA., Dev Biol. April 15, 2001; 232 (2): 327-38.   


CaM kinase IV regulates lineage commitment and survival of erythroid progenitors in a non-cell-autonomous manner., Wayman GA., J Cell Biol. November 13, 2000; 151 (4): 811-24.   


Hes6 acts in a positive feedback loop with the neurogenins to promote neuronal differentiation., Koyano-Nakagawa N., Development. October 1, 2000; 127 (19): 4203-16.   


Distinct origins of adult and embryonic blood in Xenopus., Ciau-Uitz A., Cell. September 15, 2000; 102 (6): 787-96.   


X-ngnr-1 and Xath3 promote ectopic expression of sensory neuron markers in the neurula ectoderm and have distinct inducing properties in the retina., Perron M., Proc Natl Acad Sci U S A. December 21, 1999; 96 (26): 14996-5001.   


A Xenopus homologue of aml-1 reveals unexpected patterning mechanisms leading to the formation of embryonic blood., Tracey WD., Development. April 1, 1998; 125 (8): 1371-80.   

???pagination.result.page??? 1