Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (4908) Expression Attributions Wiki
XB-ANAT-3713

Papers associated with left (and aldh1a2)

Limit to papers also referencing gene:
Show all left papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Impaired spermatogenesis and associated endocrine effects of azole fungicides in peripubertal Xenopus tropicalis., Svanholm S., Ecotoxicol Environ Saf. January 15, 2024; 270 115876.   


Retinoic acid control of pax8 during renal specification of Xenopus pronephros involves hox and meis3., Durant-Vesga J., Dev Biol. January 1, 2023; 493 17-28.   


Gene expression analysis of the Xenopus laevis early limb bud proximodistal axis., Hudson DT., Dev Dyn. November 1, 2022; 251 (11): 1880-1896.   


Using an aquatic model, Xenopus laevis, to uncover the role of chromodomain 1 in craniofacial disorders., Wyatt BH., Genesis. February 1, 2021; 59 (1-2): e23394.   


Retinoic Acid Fluctuation Activates an Uneven, Direction-Dependent Network-Wide Robustness Response in Early Embryogenesis., Parihar M., Front Cell Dev Biol. January 1, 2021; 9 747969.   


The Lhx1-Ldb1 complex interacts with Furry to regulate microRNA expression during pronephric kidney development., Espiritu EB., Sci Rep. October 30, 2018; 8 (1): 16029.   


Retinoic acid-induced expression of Hnf1b and Fzd4 is required for pancreas development in Xenopus laevis., Gere-Becker MB., Development. June 8, 2018; 145 (12):   


Timing is everything: Reiterative Wnt, BMP and RA signaling regulate developmental competence during endoderm organogenesis., Rankin SA, Rankin SA., Dev Biol. February 1, 2018; 434 (1): 121-132.   


Spemann organizer transcriptome induction by early beta-catenin, Wnt, Nodal, and Siamois signals in Xenopus laevis., Ding Y., Proc Natl Acad Sci U S A. April 11, 2017; 114 (15): E3081-E3090.   


Xenopus Limb bud morphogenesis., Keenan SR., Dev Dyn. March 1, 2016; 245 (3): 233-43.   


Left-right patterning in Xenopus conjoined twin embryos requires serotonin signaling and gap junctions., Vandenberg LN., Int J Dev Biol. January 1, 2014; 58 (10-12): 799-809.   


Left-right asymmetry: lessons from Cancún., Burdine RD., Development. November 1, 2013; 140 (22): 4465-70.   


ERF and ETV3L are retinoic acid-inducible repressors required for primary neurogenesis., Janesick A., Development. August 1, 2013; 140 (15): 3095-106.   


Optimal histone H3 to linker histone H1 chromatin ratio is vital for mesodermal competence in Xenopus., Lim CY., Development. February 1, 2013; 140 (4): 853-60.   


Suppression of Bmp4 signaling by the zinc-finger repressors Osr1 and Osr2 is required for Wnt/β-catenin-mediated lung specification in Xenopus., Rankin SA, Rankin SA., Development. August 1, 2012; 139 (16): 3010-20.   


fus/TLS orchestrates splicing of developmental regulators during gastrulation., Dichmann DS., Genes Dev. June 15, 2012; 26 (12): 1351-63.   


Short chain dehydrogenase/reductase rdhe2 is a novel retinol dehydrogenase essential for frog embryonic development., Belyaeva OV., J Biol Chem. March 16, 2012; 287 (12): 9061-71.   


Expression of key retinoic acid modulating genes suggests active regulation during development and regeneration of the amphibian limb., McEwan J., Dev Dyn. May 1, 2011; 240 (5): 1259-70.   


Hox and Pbx factors control retinoic acid synthesis during hindbrain segmentation., Vitobello A., Dev Cell. April 19, 2011; 20 (4): 469-82.   


Retinoic acid is a key regulatory switch determining the difference between lung and thyroid fates in Xenopus laevis., Wang JH., BMC Dev Biol. January 26, 2011; 11 75.   


Analysis of the expression of retinoic acid metabolising genes during Xenopus laevis organogenesis., Lynch J., Gene Expr Patterns. January 1, 2011; 11 (1-2): 112-7.   


Fgf is required to regulate anterior-posterior patterning in the Xenopus lateral plate mesoderm., Deimling SJ., Mech Dev. January 1, 2011; 128 (7-10): 327-41.   


Retinoic acid regulates anterior-posterior patterning within the lateral plate mesoderm of Xenopus., Deimling SJ., Mech Dev. October 1, 2009; 126 (10): 913-23.   


Ethanol induces embryonic malformations by competing for retinaldehyde dehydrogenase activity during vertebrate gastrulation., Kot-Leibovich H., Dis Model Mech. January 1, 2009; 2 (5-6): 295-305.   


Identification of genes associated with regenerative success of Xenopus laevis hindlimbs., Pearl EJ., BMC Dev Biol. June 23, 2008; 8 66.   


The cdx genes and retinoic acid control the positioning and segmentation of the zebrafish pronephros., Wingert RA., PLoS Genet. October 1, 2007; 3 (10): 1922-38.   


Shisa2 promotes the maturation of somitic precursors and transition to the segmental fate in Xenopus embryos., Nagano T., Development. December 1, 2006; 133 (23): 4643-54.   


Retinoic acid signalling is required for specification of pronephric cell fate., Cartry J., Dev Biol. November 1, 2006; 299 (1): 35-51.   


Role for retinoid signaling in left-right asymmetric digestive organ morphogenesis., Lipscomb K., Dev Dyn. August 1, 2006; 235 (8): 2266-75.   


Dorsoventral patterning of the Xenopus eye: a collaboration of Retinoid, Hedgehog and FGF receptor signaling., Lupo G., Development. April 1, 2005; 132 (7): 1737-48.   


Global analysis of RAR-responsive genes in the Xenopus neurula using cDNA microarrays., Arima K., Dev Dyn. February 1, 2005; 232 (2): 414-31.   


Exploration of the extracellular space by a large-scale secretion screen in the early Xenopus embryo., Pera EM., Int J Dev Biol. January 1, 2005; 49 (7): 781-96.   


The Meis3 protein and retinoid signaling interact to pattern the Xenopus hindbrain., Dibner C., Dev Biol. July 1, 2004; 271 (1): 75-86.   


Xrx1 controls proliferation and neurogenesis in Xenopus anterior neural plate., Andreazzoli M., Development. November 1, 2003; 130 (21): 5143-54.   


The germ cell nuclear factor is required for retinoic acid signaling during Xenopus development., Barreto G., Mech Dev. April 1, 2003; 120 (4): 415-28.   


Increased XRALDH2 activity has a posteriorizing effect on the central nervous system of Xenopus embryos., Chen Y., Mech Dev. March 1, 2001; 101 (1-2): 91-103.   

???pagination.result.page??? 1